test_fake_quantize_op.py 9.3 KB
Newer Older
视言's avatar
视言 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

视言's avatar
视言 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest
20
import paddle.fluid.core as core
视言's avatar
视言 已提交
21 22 23 24


class TestFakeQuantizeOp(OpTest):
    def setUp(self):
25 26 27 28 29 30 31 32 33 34 35 36
        self.op_type = "fake_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {'X': np.random.random((124, 240)).astype("float32"), }
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
        self.outputs = {
            'Out': np.round(self.inputs['X'] / scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
            'OutScale': np.array(scale).astype("float32"),
        }

    def test_check_output(self):
        self.check_output()
Z
Zhen Wang 已提交
37 38


39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class TestFakeQuantizeOp1(OpTest):
    def setUp(self):
        self.op_type = "fake_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {'X': np.zeros((10, 10)).astype("float32"), }
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
        inv_scale = 1.0 / (scale + 1e-6) if scale < 1e-30 else 1.0 / scale
        self.outputs = {
            'Out': np.round(self.inputs['X'] * inv_scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
            'OutScale': np.array(scale).astype("float32"),
        }

    def test_check_output(self):
        self.check_output()


class TestFakeQuantizeOp2(OpTest):
    def setUp(self):
        self.op_type = "fake_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {'X': np.full((10, 10), 1e-40).astype("float32"), }
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
        inv_scale = 1.0 / (scale + 1e-6) if scale < 1e-30 else 1.0 / scale
        self.outputs = {
            'Out': np.round(self.inputs['X'] * inv_scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
            'OutScale': np.array(scale).astype("float32"),
        }

    def test_check_output(self):
        self.check_output()


Z
Zhen Wang 已提交
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
class TestFakeChannelWiseQuantizeOp(OpTest):
    def setUp(self):
        self.op_type = "fake_channel_wise_quantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {
            'X': np.random.random((4, 3, 64, 64)).astype("float32"),
        }
        scales = []
        for i in range(self.inputs['X'].shape[0]):
            scales.append(np.max(np.abs(self.inputs['X'][i])).astype("float32"))
        outputs = self.inputs['X'].copy()
        for i, scale in enumerate(scales):
            outputs[i] = np.round(outputs[i] / scale * (
                (1 << (self.attrs['bit_length'] - 1)) - 1))

        self.outputs = {
            'Out': outputs,
90
            'OutScale': np.array(scales).astype("float32"),
Z
Zhen Wang 已提交
91 92 93 94
        }

    def test_check_output(self):
        self.check_output()
95 96


97
class TestFakeQuantizeRangeAbsMaxOp(OpTest):
98 99
    def setUp(self):
        self.op_type = "fake_quantize_range_abs_max"
视言's avatar
视言 已提交
100
        self.attrs = {
101 102 103
            'bit_length': int(5),
            'window_size': int(1),
            'is_test': False
视言's avatar
视言 已提交
104
        }
105 106
        x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10
        x = x.astype("float32")
视言's avatar
视言 已提交
107
        self.inputs = {
108
            'X': x,
109 110
            'Iter': np.zeros(1).astype("int64"),
            'InScale': np.zeros(1).astype("float32")
视言's avatar
视言 已提交
111
        }
112
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
113

114 115
        out_scales = np.zeros(self.attrs['window_size']).astype("float32")
        out_scales[0] = scale
视言's avatar
视言 已提交
116
        self.outputs = {
117
            'Out': np.round(self.inputs['X'] / scale * (
视言's avatar
视言 已提交
118
                (1 << (self.attrs['bit_length'] - 1)) - 1)),
119 120
            'OutScale': scale,
            'OutScales': out_scales,
视言's avatar
视言 已提交
121 122 123 124 125 126
        }

    def test_check_output(self):
        self.check_output()


Z
Zhen Wang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
class TestMovingAverageAbsMaxScaleOp(OpTest):
    def setUp(self):
        self.op_type = "moving_average_abs_max_scale"
        self.attrs = {'moving_rate': float(0.9), 'is_test': False}
        accum = np.zeros(1).astype("float32")
        accum[0] = 1
        state = np.zeros(1).astype("float32")
        state[0] = 1
        self.inputs = {
            'X': np.random.random((8, 16, 7, 7)).astype("float32"),
            'InAccum': accum,
            'InState': state,
        }

        out_accum = np.zeros(1).astype("float32")
        out_state = np.zeros(1).astype("float32")
        out_scale = np.zeros(1).astype("float32")
        out_accum[0] = self.attrs['moving_rate'] * accum[0] + np.max(
            np.abs(self.inputs['X'])).astype("float32")
        out_state[0] = self.attrs['moving_rate'] * state[0] + 1
        out_scale = out_accum / out_state
        self.outputs = {
            'Out': self.inputs['X'],
            'OutAccum': out_accum,
            'OutState': out_state,
            'OutScale': out_scale,
        }

    def test_check_output(self):
        self.check_output()


159 160 161 162 163 164 165 166 167 168
class TestFakeQuantizeRangeAbsMaxOp2(OpTest):
    def setUp(self):
        self.op_type = "fake_quantize_range_abs_max"
        self.attrs = {
            'bit_length': int(8),
            'window_size': int(1),
            'is_test': True
        }
        x = (np.random.random((8, 16, 7, 7)) - 0.5) * 10
        x = x.astype("float32")
169
        scale = np.array([np.max(np.abs(x)).astype("float32") - 1.0])
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        out_scales = np.zeros(self.attrs['window_size']).astype("float32")
        out_scales[0] = scale
        self.inputs = {
            'X': x,
            'Iter': np.zeros(1).astype("int64"),
            'InScale': scale.astype("float32")
        }
        xs = np.clip(x, -scale, scale)
        qs = np.round(xs / scale * ((1 << (self.attrs['bit_length'] - 1)) - 1))
        self.outputs = {
            'Out': qs,
            'OutScale': scale.astype("float32"),
            'OutScales': out_scales,
        }

    def test_check_output(self):
        self.check_output(no_check_set=set(['OutScale', 'OutScales']))


189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
class TestMovingOpBase(OpTest):
    def setUp(self):
        self.init_type()
        self.attrs = {
            'bit_length': int(5),
            'moving_rate': float(0.9),
            'is_test': False
        }
        accum = np.zeros(1).astype("float32")
        accum[0] = 1
        state = np.zeros(1).astype("float32")
        state[0] = 1
        scale = np.zeros(1).astype("float32")
        scale[0] = 0.001
        self.inputs = {
            'X': np.random.random((8, 16, 7, 7)).astype("float32"),
            'InScale': scale,
            'InAccum': accum,
            'InState': state,
        }

        out_accum = np.zeros(1).astype("float32")
        out_state = np.zeros(1).astype("float32")
        out_scale = np.zeros(1).astype("float32")
        out_accum[0] = self.attrs['moving_rate'] * accum[0] + np.max(
            np.abs(self.inputs['X'])).astype("float32")
        out_state[0] = self.attrs['moving_rate'] * state[0] + 1
        out_scale = out_accum / out_state
        out_data = self.calc_output(out_scale)
        self.outputs = {
            'Out': out_data,
            'OutAccum': out_accum,
            'OutState': out_state,
            'OutScale': out_scale,
        }

    def init_type(self):
        self.op_type = "fake_quantize_moving_average_abs_max"

    def calc_output(self, out_scale):
        return np.round(self.inputs['X'] / out_scale * (
            (1 << (self.attrs['bit_length'] - 1)) - 1))

    def test_check_output(self):
        self.check_output()


class TestFakeQuantDequantMovingOp(TestMovingOpBase):
    def init_type(self):
        self.op_type = "fake_quantize_dequantize_moving_average_abs_max"

    def calc_output(self, out_scale):
        range_v = (1 << (self.attrs['bit_length'] - 1)) - 1
        return np.round(self.inputs['X'] / out_scale *
                        range_v) * out_scale / range_v

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def test_check_grad(self):
        x = self.inputs["X"]
        gradient = [np.ones(x.shape) / np.product(x.shape)]
        self.check_grad(["X"], "Out", user_defined_grads=gradient)


class TestFakeQuantDequantAbsOp(OpTest):
    def setUp(self):
        self.op_type = "fake_quantize_dequantize_abs_max"
        self.attrs = {'bit_length': 8}
        self.inputs = {'X': np.random.random((124, 240)).astype("float32"), }
        scale = np.max(np.abs(self.inputs['X'])).astype("float32")
        out_data = self.calc_output(scale)
        self.outputs = {
            'Out': out_data,
            'OutScale': np.array(scale).astype("float32"),
        }

    def calc_output(self, scale):
        range_v = (1 << (self.attrs['bit_length'] - 1)) - 1
        return np.round(self.inputs['X'] / scale * range_v) * scale / range_v

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        x = self.inputs["X"]
        gradient = [np.ones(x.shape) / np.product(x.shape)]
        self.check_grad(["X"], "Out", user_defined_grads=gradient)

275

视言's avatar
视言 已提交
276 277
if __name__ == "__main__":
    unittest.main()