test_inference_model_io.py 7.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

D
dzhwinter 已提交
17 18
import unittest

19
import os
M
minqiyang 已提交
20
import six
D
dzhwinter 已提交
21
import numpy as np
22
import paddle.fluid.core as core
23 24
import paddle.fluid as fluid
import warnings
25

26 27 28
import paddle.fluid.executor as executor
import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer
T
tangwei12 已提交
29
from paddle.fluid.compiler import CompiledProgram
30
from paddle.fluid.framework import Program, program_guard
31
from paddle.fluid.io import save_inference_model, load_inference_model, save_persistables
D
dzhwinter 已提交
32
from paddle.fluid.transpiler import memory_optimize
33 34 35


class TestBook(unittest.TestCase):
36 37 38 39 40 41
    class InferModel(object):
        def __init__(self, list):
            self.program = list[0]
            self.feed_var_names = list[1]
            self.fetch_vars = list[2]

42 43
    def test_fit_line_inference_model(self):
        MODEL_DIR = "./tmp/inference_model"
44
        UNI_MODEL_DIR = "./tmp/inference_model1"
45 46 47

        init_program = Program()
        program = Program()
48 49 50 51 52 53 54 55

        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
Y
Yu Yang 已提交
56
            avg_cost = layers.mean(cost)
57 58 59

            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
            sgd_optimizer.minimize(avg_cost, init_program)
60 61 62 63 64 65

        place = core.CPUPlace()
        exe = executor.Executor(place)

        exe.run(init_program, feed={}, fetch_list=[])

M
minqiyang 已提交
66
        for i in six.moves.xrange(100):
D
dzhwinter 已提交
67
            tensor_x = np.array(
68
                [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32")
D
dzhwinter 已提交
69
            tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32")
70 71 72 73 74 75

            exe.run(program,
                    feed={'x': tensor_x,
                          'y': tensor_y},
                    fetch_list=[avg_cost])

76
        # Separated model and unified model
77
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
78 79 80 81 82 83
        save_inference_model(UNI_MODEL_DIR, ["x", "y"], [avg_cost], exe,
                             program, 'model', 'params')
        main_program = program.clone()._prune_with_input(
            feeded_var_names=["x", "y"], targets=[avg_cost])
        params_str = save_persistables(exe, None, main_program, None)

D
dzhwinter 已提交
84 85 86 87
        expected = exe.run(program,
                           feed={'x': tensor_x,
                                 'y': tensor_y},
                           fetch_list=[avg_cost])[0]
88

M
minqiyang 已提交
89
        six.moves.reload_module(executor)  # reload to build a new scope
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
        model_0 = self.InferModel(load_inference_model(MODEL_DIR, exe))
        with open(os.path.join(UNI_MODEL_DIR, 'model'), "rb") as f:
            model_str = f.read()
        model_1 = self.InferModel(
            load_inference_model(None, exe, model_str, params_str))

        for model in [model_0, model_1]:
            outs = exe.run(model.program,
                           feed={
                               model.feed_var_names[0]: tensor_x,
                               model.feed_var_names[1]: tensor_y
                           },
                           fetch_list=model.fetch_vars)
            actual = outs[0]

            self.assertEqual(model.feed_var_names, ["x", "y"])
            self.assertEqual(len(model.fetch_vars), 1)
            print("fetch %s" % str(model.fetch_vars[0]))
            self.assertEqual(expected, actual)

        self.assertRaises(ValueError, fluid.io.load_inference_model, None, exe,
                          model_str, None)
113 114


D
dzhwinter 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class TestSaveInferenceModel(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model2"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

D
dzhwinter 已提交
135
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program)
D
dzhwinter 已提交
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def test_save_inference_model_with_auc(self):
        MODEL_DIR = "./tmp/inference_model4"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')
            predict = fluid.layers.fc(input=x, size=2, act='softmax')
            acc = fluid.layers.accuracy(input=predict, label=y)
            auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict,
                                                                  label=y)
            cost = fluid.layers.cross_entropy(input=predict, label=y)
            avg_cost = fluid.layers.mean(x=cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])
        with warnings.catch_warnings(record=True) as w:
            warnings.simplefilter("always")
            save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe,
                                 program)
            expected_warn = "please ensure that you have set the auc states to zeros before saving inference model"
            self.assertTrue(len(w) > 0)
            self.assertTrue(expected_warn == str(w[0].message))

D
dzhwinter 已提交
164

T
tangwei12 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class TestInstance(unittest.TestCase):
    def test_save_inference_model(self):
        MODEL_DIR = "./tmp/inference_model3"
        init_program = Program()
        program = Program()

        # fake program without feed/fetch
        with program_guard(program, init_program):
            x = layers.data(name='x', shape=[2], dtype='float32')
            y = layers.data(name='y', shape=[1], dtype='float32')

            y_predict = layers.fc(input=x, size=1, act=None)

            cost = layers.square_error_cost(input=y_predict, label=y)
            avg_cost = layers.mean(cost)

        place = core.CPUPlace()
        exe = executor.Executor(place)
        exe.run(init_program, feed={}, fetch_list=[])

        # will print warning message

        cp_prog = CompiledProgram(program).with_data_parallel(
            loss_name=avg_cost.name)

C
chengduo 已提交
190
        save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog)
T
tangwei12 已提交
191 192 193 194
        self.assertRaises(TypeError, save_inference_model,
                          [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog])


195 196
if __name__ == '__main__':
    unittest.main()