conv_kernel.cu 1.9 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_kernel.h"
#include "paddle/phi/kernels/impl/conv_kernel_impl.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

namespace phi {

template <typename T, typename Context>
void Conv3DKernel(const Context& dev_ctx,
                  const DenseTensor& input,
                  const DenseTensor& filter,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string& padding_algorithm,
                  int groups,
                  const std::vector<int>& dilations,
                  const std::string& data_format,
                  bool use_addto,
                  int workspace_size_MB,
                  bool exhaustive_search,
                  DenseTensor* out) {
  ConvKernel<T>(dev_ctx,
                input,
                filter,
                strides,
                paddings,
                padding_algorithm,
                groups,
                dilations,
                data_format,
                use_addto,
                workspace_size_MB,
                exhaustive_search,
                out);
}

}  // namespace phi

PD_REGISTER_KERNEL(conv2d, GPU, ALL_LAYOUT, phi::ConvKernel, float, double) {}

PD_REGISTER_KERNEL(conv3d, GPU, ALL_LAYOUT, phi::Conv3DKernel, float, double) {}