gan_api.md 8.9 KB
Newer Older
Z
zchen0211 已提交
1 2 3 4 5 6 7 8
# Design for GAN

GAN (General Adversarial Net) is an important model for unsupervised learning and widely used in many areas. 

It contains several important machine learning concepts, including building and running subgraphs, dependency tracing, different optimizers in one executor and so forth.

In our GAN design, we wrap it as a user-friendly easily customized python API to design different models. We take the conditional DC-GAN as an example due to its good performance on image generation.

Z
gan api  
zchen0211 已提交
9 10 11 12
| important building blocks | People in Charge  | Required |
|---------------------------|-------------------|----------|
| convolution 2d (done)     | Chengduo          | Y        |
| cudnn conv 2d (missing)   | Chengduo          | N        |
Z
gan api  
zchen0211 已提交
13 14
| deconv 2d (missing)       | Zhuoyuan, Zhihong | Y        |
| cudnn deconv 2d (missing) | Zhuoyuan, Zhihong | N        |
Z
gan api  
zchen0211 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27
| batch norm (missing)      | Zhuoyuan, Jiayi   | Y        |
| cudnn batch norm (missing)| Zhuoyuan, Jiayi   | N        |
| max-pooling (done)        | ?                 | Y        |
| fc (done)                 | ?                 | Y        |
| softmax loss (done)       | ?                 | Y        |
| reshape op (done)         | ?                 | Y        |
| Dependency Engine (done)  | Jiayi             | Y *      |
| Python API (done)         | Jiayi             | Y *      |
| Executor (done)           | Tony              | Y *      |
| Multi optimizer           | ?                 | Y *      |
| Optimizer with any para   | ?                 | Y *      |
| Concat op                 | ?                 | N (Cond) |
| Repmat op                 | ?                 | N (Cond) |
Z
new gan  
zchen0211 已提交
28 29


Z
zchen0211 已提交
30 31 32 33 34
<p align="center">
<img src="./dcgan.png" width = "90%" align="center"/><br/>
Borrow this photo from the original DC-GAN paper.
</p>

Z
zchen0211 已提交
35 36 37
## The Conditional-GAN might be a class. 
This design we adopt the popular open source design in https://github.com/carpedm20/DCGAN-tensorflow and https://github.com/rajathkmp/DCGAN. It contains following data structure:

Z
zchen0211 已提交
38
- DCGAN(object): which contains everything required to build a GAN model. It provides following member functions methods as API:
Z
zchen0211 已提交
39

Z
zchen0211 已提交
40
- __init__(...): Initialize hyper-parameters (like conv dimension and so forth), and declare model parameters of discriminator and generator as well.
Z
zchen0211 已提交
41

Z
zchen0211 已提交
42
- generator(z, y=None): Generate a fake image from input noise z. If the label y is provided, the conditional GAN model will be chosen.
Z
zchen0211 已提交
43 44
Returns a generated image.

Z
zchen0211 已提交
45
- discriminator(image):
Z
zchen0211 已提交
46 47 48
Given an image, decide if it is from a real source or a fake one. 
Returns a 0/1 binary label.

Z
zchen0211 已提交
49
- build_model(self):
Z
zchen0211 已提交
50
build the whole GAN model, define training loss for both generator and discrimator.
Z
zchen0211 已提交
51

Z
zchen0211 已提交
52 53 54 55 56 57 58 59 60
## Discussion on Engine Functions required to build GAN
- Trace the ternsor and variable dependency in the engine executor. (Very critical, otherwise GAN can'be be trained correctly)
- Different optimizers responsible for optimizing different loss.

To be more detailed, we introduce our design of DCGAN as following:

### Class member Function: Initializer
- Set up hyper-parameters, including condtional dimension, noise dimension, batch size and so forth.
- Declare and define all the model variables. All the discriminator parameters are included in the list self.theta_D and all the generator parameters are included in the list self.theta_G.
Z
gan api  
zchen0211 已提交
61
```python
Z
zchen0211 已提交
62 63 64 65 66 67 68 69 70
class DCGAN(object):
  def __init__(self, y_dim=None):
  
    # hyper parameters  
    self.y_dim = y_dim # conditional gan or not
    self.batch_size = 100
    self.z_dim = z_dim # input noise dimension

    # define parameters of discriminators
Z
zchen0211 已提交
71
    self.D_W0 = pd.Variable(shape=[3,3, 1, 128], data=pd.gaussian_normal_randomizer())
Z
gan api  
zchen0211 已提交
72
    self.D_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
73 74 75 76
    self.D_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.D_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.D_W2 = pd.Varialble(np.random.rand(128, 1))
    self.D_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
77
    self.theta_D = [self.D_W0, self.D_b0, self.D_W1, self.D_b1, self.D_W2, self.D_b2]
Z
zchen0211 已提交
78 79

    # define parameters of generators
Z
gan api  
zchen0211 已提交
80 81
    self.G_W0 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b0 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
Z
zchen0211 已提交
82 83 84 85
    self.G_W1 = pd.Variable(shape=[784, 128], data=pd.gaussian_normal_randomizer())
    self.G_b1 = pd.Variable(np.zeros(128)) # variable also support initialization using a  numpy data
    self.G_W2 = pd.Varialble(np.random.rand(128, 1))
    self.G_b2 = pd.Variable(np.zeros(128))
Z
gan api  
zchen0211 已提交
86 87
    self.theta_G = [self.G_W0, self.G_b0, self.G_W1, self.G_b1, self.G_W2, self.G_b2]
```
Z
zchen0211 已提交
88

Z
zchen0211 已提交
89 90 91 92
### Class member Function: Generator
- Given a noisy input z, returns a fake image.
- Concatenation, batch-norm, FC operations required;
- Deconv layer required, which is missing now...
Z
gan api  
zchen0211 已提交
93
```python
Z
zchen0211 已提交
94
def generator(self, z, y = None):
Z
zchen0211 已提交
95 96 97 98
    # input z: the random noise
    # input y: input data label (optional)
    # output G_im: generated fake images
    
Z
zchen0211 已提交
99 100 101 102 103 104 105
    if not self.y_dim:
      z = pd.concat(1, [z, y])
      
    G_h0 = pd.fc(z, self.G_w0, self.G_b0)
    G_h0_bn = pd.batch_norm(G_h0)
    G_h0_relu = pd.relu(G_h0_bn)
    
Z
zchen0211 已提交
106
    G_h1 = pd.deconv(G_h0_relu, self.G_w1, self.G_b1)
Z
zchen0211 已提交
107 108 109 110 111 112
    G_h1_bn = pd.batch_norm(G_h1)
    G_h1_relu = pd.relu(G_h1_bn)
    
    G_h2 = pd.deconv(G_h1_relu, self.G_W2, self.G_b2))
    G_im = pd.tanh(G_im)
    return G_im
Z
gan api  
zchen0211 已提交
113 114
```

Z
zchen0211 已提交
115 116 117
### Class member function: Discriminator
- Given a noisy input z, returns a fake image.
- Concatenation, Convolution, batch-norm, FC, Leaky-ReLU operations required;
Z
gan api  
zchen0211 已提交
118
```python
Z
zchen0211 已提交
119
def discriminator(self, image):
Z
zchen0211 已提交
120 121
    # input image: either generated images or real ones
    # output D_h2: binary logit of the label
Z
zchen0211 已提交
122 123 124 125 126 127 128 129 130 131 132

    D_h0 = pd.conv2d(image, self.D_w0, self.D_b0)
    D_h0_bn = pd.batchnorm(h0)
    D_h0_relu = pd.lrelu(h0_bn)
    
    D_h1 = pd.conv2d(D_h0_relu, self.D_w1, self.D_b1)
    D_h1_bn = pd.batchnorm(D_h1)
    D_h1_relu = pd.lrelu(D_h1_bn)
    
    D_h2 = pd.fc(D_h1_relu, self.D_w2, self.D_b2)
    return D_h2
Z
gan api  
zchen0211 已提交
133
```
Z
zchen0211 已提交
134 135

### Class member function: Build the model
Z
zchen0211 已提交
136 137 138
- Define data readers as placeholders to hold the data;
- Build generator and discriminators;
- Define two training losses for discriminator and generator, respectively. 
Z
gan api  
zchen0211 已提交
139
```python
Z
zchen0211 已提交
140 141 142 143 144 145 146 147 148
def build_model(self):

    # input data
    if self.y_dim:
        self.y = pd.data(pd.float32, [self.batch_size, self.y_dim])
    self.images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.faked_images = pd.data(pd.float32, [self.batch_size, self.im_size, self.im_size])
    self.z = pd.data(tf.float32, [None, self.z_size])
    
Z
zchen0211 已提交
149 150
    # step 1: generate images by generator, classify real/fake images with discriminator
    if self.y_dim: # if conditional GAN, includes label
Z
zchen0211 已提交
151 152 153 154 155 156 157 158 159 160 161 162
      self.G = self.generator(self.z, self.y)
      self.D_t = self.discriminator(self.images)
      # generated fake images
      self.sampled = self.sampler(self.z, self.y)
      self.D_f = self.discriminator(self.images)
    else: # original version of GAN
      self.G = self.generator(self.z)
      self.D_t = self.discriminator(self.images)
      # generate fake images
      self.sampled = self.sampler(self.z)
      self.D_f = self.discriminator(self.images)
    
Z
zchen0211 已提交
163
    # step 2: define the two losses
Z
zchen0211 已提交
164 165 166 167 168
    self.d_loss_real = pd.reduce_mean(pd.cross_entropy(self.D_t, np.ones(self.batch_size))
    self.d_loss_fake = pd.reduce_mean(pd.cross_entropy(self.D_f, np.zeros(self.batch_size))
    self.d_loss = self.d_loss_real + self.d_loss_fake
    
    self.g_loss = pd.reduce_mean(pd.cross_entropy(self.D_f, np.ones(self.batch_szie))
Z
gan api  
zchen0211 已提交
169
```
Z
zchen0211 已提交
170

Z
zchen0211 已提交
171
## Main function for the demo:
Z
zchen0211 已提交
172 173 174 175
Generally, the user of GAN just need to the following things:
- Define an object as DCGAN class;
- Build the DCGAN model;
- Specify two optimizers for two different losses with respect to different parameters.
Z
gan api  
zchen0211 已提交
176
```python
Z
zchen0211 已提交
177 178 179 180 181
# pd for short, should be more concise.
from paddle.v2 as pd
import numpy as np
import logging

Z
zchen0211 已提交
182 183 184 185 186 187 188 189 190
if __name__ == "__main__":
    # dcgan
    dcgan = DCGAN()
    dcgan.build_model()

    # load mnist data
    data_X, data_y = self.load_mnist()
    
    # Two subgraphs required!!!
Z
zchen0211 已提交
191 192
    d_optim = pd.train.Adam(lr = .001, beta= .1).minimize(dcgan.d_loss, dcgan.theta_D)
    g_optim = pd.train.Adam(lr = .001, beta= .1).minimize(dcgan.g_loss, dcgan.theta_G)
Z
zchen0211 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206

    # executor
    sess = pd.executor()
    
    # training
    for epoch in xrange(10000):
      for batch_id in range(N / batch_size):
        idx = ...
        # sample a batch
        batch_im, batch_label = data_X[idx:idx+batch_size], data_y[idx:idx+batch_size]
        # sample z
        batch_z = np.random.uniform(-1., 1., [batch_size, z_dim])

        if batch_id % 2 == 0:
Z
zchen0211 已提交
207
          sess.run(d_optim, 
Z
zchen0211 已提交
208 209 210 211
                   feed_dict = {dcgan.images: batch_im,
                                dcgan.y: batch_label,
                                dcgan.z: batch_z})
        else:
Z
zchen0211 已提交
212
          sess.run(g_optim,
Z
zchen0211 已提交
213
                   feed_dict = {dcgan.z: batch_z})
Z
gan api  
zchen0211 已提交
214
```