reduce_op.h 33.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include <algorithm>
18
#include <set>
19
#include <string>
W
whs 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/data_type_transform.h"
23
#include "paddle/fluid/framework/tensor_util.h"
24
#include "paddle/fluid/operators/cast_op.h"
W
Wu Yi 已提交
25
#include "paddle/fluid/operators/reduce_ops/reduce_op_function.h"
26 27
#include "paddle/phi/kernels/funcs/math_function.h"
// only can include the headers in paddle/phi/api dirs
28
#include "paddle/fluid/framework/convert_utils.h"
29 30
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/kernels/cpu/reduce.h"
31

32
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
33 34
#include "paddle/phi/kernels/gpu/reduce.h"
#include "paddle/phi/kernels/gpu/reduce_grad.h"
35
#endif
G
guosheng 已提交
36 37 38 39

namespace paddle {
namespace operators {

40 41 42 43 44 45 46 47 48
#define HANDLE_DIM(NDIM, RDIM)                                   \
  if (ndim == NDIM && rdim == RDIM) {                            \
    paddle::operators::                                          \
        ReduceFunctor<DeviceContext, OutT, NDIM, RDIM, Functor>( \
            context.template device_context<DeviceContext>(),    \
            *input,                                              \
            output,                                              \
            dims,                                                \
            keep_dim);                                           \
W
whs 已提交
49 50
  }

51
using Tensor = framework::Tensor;
52 53
using DDim = framework::DDim;

54 55
inline void GetShuffledDim(const DDim& src_dims,
                           DDim* dst_dims,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
                           const std::vector<int>& reduced_dims,
                           std::vector<int>* perm_axis) {
  // check if it's a reduced dim
  std::vector<bool> src_dims_check(src_dims.size(), false);
  size_t src_size = src_dims.size();
  size_t reduce_size = reduced_dims.size();
  for (size_t i = 0; i < reduce_size; ++i) {
    dst_dims->at(src_size - reduce_size + i) = src_dims[reduced_dims[i]];
    (*perm_axis)[src_size - reduce_size + i] = reduced_dims[i];
    src_dims_check[reduced_dims[i]] = true;
  }

  size_t offset = 0;
  for (size_t i = 0; i < src_dims_check.size(); ++i) {
    bool is_reduced = src_dims_check[i];
    if (!is_reduced) {
      (*perm_axis)[offset] = i;
      dst_dims->at(offset++) = src_dims[i];
    }
  }
}

78
static inline std::vector<int> GetReduceDim(const std::vector<int>& dims,
79 80
                                            int dim_size,
                                            bool reduce_all) {
81 82 83 84 85 86 87 88 89
  std::vector<int> reduce_dims;
  if (reduce_all) {
    reduce_dims.resize(dim_size);
    int reduce_size = reduce_dims.size();
    for (int i = 0; i < reduce_size; ++i) {
      reduce_dims[i] = i;
    }
  } else {
    for (auto e : dims) {
90 91
      PADDLE_ENFORCE_LT(e,
                        dim_size,
92 93 94
                        paddle::platform::errors::InvalidArgument(
                            "ReduceOp: invalid axis, when x_dims is %d, "
                            "axis[i] should less than x_dims, but got %d.",
95 96
                            dim_size,
                            e));
97 98 99 100 101
      reduce_dims.push_back(e >= 0 ? e : e + dim_size);
    }
  }
  return reduce_dims;
}
102 103
template <typename DeviceContext, typename OutT>
void GetShuffledInput(const framework::ExecutionContext& context,
104 105
                      const Tensor* input,
                      Tensor* shuffled_input,
106 107 108 109 110 111 112 113
                      const std::vector<int>& dims) {
  DDim shuffled_dims(input->dims());
  std::vector<int> perm_axis(input->dims().size());
  GetShuffledDim(input->dims(), &shuffled_dims, dims, &perm_axis);

  shuffled_input->Resize(shuffled_dims);
  shuffled_input->mutable_data<OutT>(context.GetPlace());

114
  phi::funcs::TransposeNormal<DeviceContext, OutT> trans;
115 116 117 118
  trans(context.template device_context<DeviceContext>(),
        *input,
        shuffled_input,
        perm_axis);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
}

inline void GetOriginDimFromShuffled(const DDim& src_dim,
                                     const std::vector<int>& dims,
                                     std::vector<int>* origin_dim) {
  DDim shuffled_dims(src_dim);
  size_t n = src_dim.size();
  std::vector<int> perm_axis(n);
  GetShuffledDim(src_dim, &shuffled_dims, dims, &perm_axis);
  for (size_t i = 0; i < n; ++i) {
    (*origin_dim)[perm_axis[i]] = i;
  }
}

template <typename DeviceContext, typename OutT, typename Functor>
void HandleLargeDim(const framework::ExecutionContext& context,
135 136 137 138
                    const Tensor* input,
                    Tensor* output,
                    const std::vector<int>& dims,
                    bool keep_dim) {
139 140 141 142 143 144 145 146 147 148
  //  shuffle the reduced dim to the end
  Tensor shuffled_input;
  GetShuffledInput<DeviceContext, OutT>(context, input, &shuffled_input, dims);

  // transpose to 2D tensor whose shape is {unreduced, reduced}.
  const int64_t unreduced = output->numel();
  const int64_t reduced = shuffled_input.numel() / unreduced;
  shuffled_input.Resize({unreduced, reduced});
  DDim output_dim = output->dims();
  output->Resize({unreduced});
149
  paddle::operators::ReduceFunctor<DeviceContext, OutT, 2, 1, Functor>(
150 151 152 153 154
      context.template device_context<DeviceContext>(),
      shuffled_input,
      output,
      {1},
      keep_dim);
155 156 157 158 159 160 161
  output->Resize(output_dim);
}

template <typename DeviceContext, typename T, typename Functor>
void HandleLargeDimGrad(const framework::ExecutionContext& context,
                        const framework::Tensor* x,
                        const framework::Tensor* out,
162 163 164 165
                        const framework::Tensor* dout,
                        framework::Tensor* dx,
                        Functor functor,
                        const std::vector<int>& dims) {
166 167 168 169 170 171 172 173 174 175 176 177
  const int64_t unreduced = out->numel();
  const int64_t reduced = x->numel() / unreduced;
  DDim out_dim(out->dims());
  DDim x_dim(x->dims());
  // transpose and reshape X
  Tensor shuffled_x;
  GetShuffledInput<DeviceContext, T>(context, x, &shuffled_x, dims);
  DDim shuffled_dim = shuffled_x.dims();
  shuffled_x.Resize({unreduced, reduced});
  // reshape dX {unreduced, reduced}
  dx->Resize({unreduced, reduced});
  ReduceGradFunctor<DeviceContext, T, 2, Functor>(
178 179 180 181 182 183 184
      context.template device_context<DeviceContext>(),
      shuffled_x,
      *out,
      *dout,
      dx,
      functor,
      {1});
185 186 187 188 189 190 191
  // transpose dX
  std::vector<int> origin_axis(x_dim.size());
  GetOriginDimFromShuffled(x_dim, dims, &origin_axis);
  Tensor dx_tmp;
  framework::TensorCopy(*dx, context.GetPlace(), &dx_tmp);
  dx_tmp.Resize(shuffled_dim);
  dx->Resize(x_dim);
192
  phi::funcs::TransposeNormal<DeviceContext, T> trans;
193 194 195
  trans(context.template device_context<DeviceContext>(),
        dx_tmp,
        dx,
196 197
        origin_axis);
}
198 199 200 201 202 203 204 205 206

template <typename DeviceContext, typename T, typename Functor>
struct ReduceKernelFunctor {
  const Tensor* input;
  Tensor* output;
  std::vector<int> dims;
  bool keep_dim;
  bool reduce_all;
  const framework::ExecutionContext& context;
207 208 209 210
  ReduceKernelFunctor(const Tensor* input,
                      Tensor* output,
                      const std::vector<int>& dims,
                      bool keep_dim,
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
                      bool reduce_all,
                      const framework::ExecutionContext& context)
      : input(input),
        output(output),
        dims(dims),
        keep_dim(keep_dim),
        reduce_all(reduce_all),
        context(context) {}

  template <typename OutT>
  void apply() const {
    output->mutable_data<OutT>(context.GetPlace());
    if (reduce_all) {
      // Flatten and reduce 1-D tensor
      auto x = EigenVector<OutT>::Flatten(*input);
      auto out = EigenScalar<OutT>::From(*output);
      auto& place =
          *context.template device_context<DeviceContext>().eigen_device();
      auto reduce_dim = Eigen::array<int, 1>({{0}});
      Functor functor;
      functor(place, &x, &out, reduce_dim);
    } else {
      int ndim = input->dims().size();
      int rdim = dims.size();
235
      if (ndim > 6) {
236 237
        HandleLargeDim<DeviceContext, OutT, Functor>(
            context, input, output, dims, keep_dim);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
      } else {
        HANDLE_DIM(6, 5);
        HANDLE_DIM(6, 4);
        HANDLE_DIM(6, 3);
        HANDLE_DIM(6, 2);
        HANDLE_DIM(6, 1);
        HANDLE_DIM(5, 4);
        HANDLE_DIM(5, 3);
        HANDLE_DIM(5, 2);
        HANDLE_DIM(5, 1);
        HANDLE_DIM(4, 3);
        HANDLE_DIM(4, 2);
        HANDLE_DIM(4, 1);
        HANDLE_DIM(3, 2);
        HANDLE_DIM(3, 1);
        HANDLE_DIM(2, 1);
        HANDLE_DIM(1, 1);
      }
256 257 258
    }
  }
};
Q
QI JUN 已提交
259
template <typename DeviceContext, typename T, typename Functor>
Y
Yu Yang 已提交
260
class ReduceKernel : public framework::OpKernel<T> {
261 262 263 264 265 266 267 268
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    auto* output = context.Output<Tensor>("Out");
    auto dims = context.Attr<std::vector<int>>("dim");
    bool keep_dim = context.Attr<bool>("keep_dim");
    int out_dtype = context.Attr<int>("out_dtype");
    framework::proto::VarType::Type cast_out_dtype;
269
    auto* input = context.Input<Tensor>("X");
270

271
    if (out_dtype < 0) {
272 273
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(
          framework::TransToProtoVarType(input->dtype()));
274 275 276
    } else {
      cast_out_dtype = static_cast<framework::proto::VarType::Type>(out_dtype);
    }
277 278 279 280 281 282 283 284 285

    auto& dev_ctx = context.device_context<DeviceContext>();
    output->mutable_data(
        dev_ctx.GetPlace(),
        static_cast<framework::proto::VarType::Type>(cast_out_dtype));

    std::vector<int64_t> tmp_dims(dims.begin(), dims.end());

    // call new kernel
286 287
    phi::Reduce<typename framework::ConvertToPhiContext<DeviceContext>::TYPE,
                T,
288 289
                Functor>(
        static_cast<const typename framework::ConvertToPhiContext<
W
Wilber 已提交
290
            DeviceContext>::TYPE&>(dev_ctx),
291 292 293 294 295 296
        *input,
        reduce_all,
        tmp_dims,
        keep_dim,
        framework::TransToPhiDataType(cast_out_dtype),
        output);
297 298
  }
};
299

300 301 302 303 304
template <typename DeviceContext, typename T, typename Functor>
void LaunchReduceGradKernel(const framework::ExecutionContext& context,
                            const framework::Tensor* input0,
                            const framework::Tensor* input1,
                            const framework::Tensor* input2,
305 306
                            paddle::framework::Tensor* output,
                            Functor functor,
307 308 309 310 311 312 313 314 315 316 317
                            const std::vector<int>& dims,
                            bool reduce_all = false) {
  if (reduce_all) {
    auto x = EigenVector<T>::Flatten(*input0);
    auto x_reduce = EigenVector<T>::Flatten(*input1);
    auto x_reduce_grad = EigenVector<T>::Flatten(*input2);
    auto x_grad = EigenVector<T>::Flatten(*output);
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
    auto broadcast_dim =
        Eigen::array<int, 1>({{static_cast<int>(input0->numel())}});
318 319 320 321 322 323
    functor(place,
            &x,
            &x_reduce,
            &x_grad,
            &x_reduce_grad,
            broadcast_dim,
324 325 326 327 328 329
            broadcast_dim[0]);
  } else {
    int rank = input0->dims().size();
    switch (rank) {
      case 1:
        ReduceGradFunctor<DeviceContext, T, 1, Functor>(
330 331 332 333 334 335 336
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
337 338 339
        break;
      case 2:
        ReduceGradFunctor<DeviceContext, T, 2, Functor>(
340 341 342 343 344 345 346
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
347 348 349
        break;
      case 3:
        ReduceGradFunctor<DeviceContext, T, 3, Functor>(
350 351 352 353 354 355 356
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
357 358 359
        break;
      case 4:
        ReduceGradFunctor<DeviceContext, T, 4, Functor>(
360 361 362 363 364 365 366
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
367 368 369
        break;
      case 5:
        ReduceGradFunctor<DeviceContext, T, 5, Functor>(
370 371 372 373 374 375 376
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
377 378 379
        break;
      case 6:
        ReduceGradFunctor<DeviceContext, T, 6, Functor>(
380 381 382 383 384 385 386
            context.template device_context<DeviceContext>(),
            *input0,
            *input1,
            *input2,
            output,
            functor,
            dims);
387 388
        break;
      default:
389 390
        HandleLargeDimGrad<DeviceContext, T, Functor>(
            context, input0, input1, input2, output, functor, dims);
391 392 393 394 395
        break;
    }
  }
}

396 397 398 399 400
template <typename DeviceContext,
          typename T,
          typename Functor,
          bool kNoNeedBufferX = false,
          bool kNoNeedBufferY = false>
Y
Yu Yang 已提交
401
class ReduceGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
402
 public:
403 404
  void ComputeFromInput(const Tensor* input2,
                        const framework::ExecutionContext& context) const {
405
    bool reduce_all = context.Attr<bool>("reduce_all");
406 407 408
    auto dims = context.Attr<std::vector<int>>("dim");
    auto* input0 = context.Input<Tensor>("X");
    auto* input1 = context.Input<Tensor>("Out");
409

410 411 412
    auto* output = context.Output<Tensor>(framework::GradVarName("X"));
    output->mutable_data<T>(context.GetPlace());

413 414 415 416 417 418 419 420 421 422 423
    // The dims has full dim, set the reduce_all is True
    const auto& input_dim_size = context.Input<Tensor>("X")->dims().size();
    std::set<int> dims_set(dims.begin(), dims.end());
    bool full_dim = true;
    for (auto i = 0; i < input_dim_size; i++) {
      if (dims_set.find(i) == dims_set.end()) {
        full_dim = false;
        break;
      }
    }
    reduce_all = (reduce_all || full_dim);
424 425 426 427 428 429 430 431 432 433 434
    // NOTE: EigenTensor::From() uses tensor->data()
    // if op has NoNeedBufferVarsInferer, the corresponding kNoNeedBufferX or
    // kNoNeedBufferY should set true
    // and use fake var that has same dims.
    if (kNoNeedBufferX) {
      input0 = output;
    }
    if (kNoNeedBufferY) {
      input1 = input2;
    }

435 436
    const std::vector<int> const_dims = dims;

L
lvmengsi 已提交
437 438 439
    // NOTE(dengkaipeng): Out is unnecessary in some reduce kernel and
    // not be set as Input in grad Maker, use Out_grad to replace here
    if (!input1) input1 = input2;
440
    Functor functor;
441 442 443 444 445 446 447 448
    LaunchReduceGradKernel<DeviceContext, T, Functor>(context,
                                                      input0,
                                                      input1,
                                                      input2,
                                                      output,
                                                      functor,
                                                      const_dims,
                                                      reduce_all);
G
guosheng 已提交
449
  }
450 451 452 453 454 455

  void Compute(const framework::ExecutionContext& context) const override {
    int in_dtype = context.Attr<int>("in_dtype");
    if (in_dtype >= 0) {
      Tensor tmp_tensor;
      auto* pre_input = context.Input<Tensor>(framework::GradVarName("Out"));
456 457 458
      auto in_kernel_type = framework::OpKernelType(
          framework::TransToProtoVarType(pre_input->dtype()),
          context.GetPlace());
459 460 461
      auto out_kernel_type = framework::OpKernelType(
          static_cast<framework::proto::VarType::Type>(in_dtype),
          context.GetPlace());
462 463
      framework::TransDataType(
          in_kernel_type, out_kernel_type, *pre_input, &tmp_tensor);
464 465 466 467 468 469 470
      ComputeFromInput(&tmp_tensor, context);

    } else {
      auto* input2 = context.Input<Tensor>(framework::GradVarName("Out"));
      ComputeFromInput(input2, context);
    }
  }
471
};
G
guosheng 已提交
472

473 474 475
class ReduceOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
G
guosheng 已提交
476

477
  void InferShape(framework::InferShapeContext* ctx) const override {
478 479
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "ReduceOp");
480 481 482
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
483 484
    PADDLE_ENFORCE_GT(dims.size(),
                      0,
485 486 487 488 489
                      platform::errors::InvalidArgument(
                          "The input dim dimensions of ReduceOp "
                          "should be greater than 0. But received the dim "
                          "dimesions of Reduce = %d.",
                          dims.size()));
490

491
    for (size_t i = 0; i < dims.size(); ++i) {
492 493
      PADDLE_ENFORCE_LT(dims[i],
                        x_rank,
494 495 496 497
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
498 499 500 501 502
                            i,
                            x_rank,
                            dims[i]));
      PADDLE_ENFORCE_GE(dims[i],
                        -x_rank,
503 504 505 506
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)] "
                            "which dimesion = %d. But received dim index = %d.",
507 508 509
                            i,
                            x_rank,
                            dims[i]));
510 511 512 513 514 515 516
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
    }
    sort(dims.begin(), dims.end());
    bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
    bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
    if (reduce_all) {
      if (keep_dim)
517
        ctx->SetOutputDim("Out",
518
                          phi::make_ddim(std::vector<int64_t>(x_rank, 1)));
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
      else
        ctx->SetOutputDim("Out", {1});
    } else {
      auto dims_vector = vectorize(x_dims);
      if (keep_dim) {
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = 1;
        }
      } else {
        const int kDelFlag = -2;
        for (size_t i = 0; i < dims.size(); ++i) {
          dims_vector[dims[i]] = kDelFlag;
        }
        dims_vector.erase(
            remove(dims_vector.begin(), dims_vector.end(), kDelFlag),
            dims_vector.end());
      }
536 537 538
      if (!keep_dim && dims_vector.size() == 0) {
        dims_vector.push_back(1);
      }
539
      auto out_dims = phi::make_ddim(dims_vector);
540
      ctx->SetOutputDim("Out", out_dims);
541
      if (dims.size() > 0 && dims[0] != 0) {
542 543 544 545 546
        // Only pass LoD when not reducing on the first dim.
        ctx->ShareLoD("X", /*->*/ "Out");
      }
    }
  }
547 548 549 550 551 552 553 554 555 556 557

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");

    if (ctx.Input<paddle::framework::LoDTensor>("X")->dims().size() > 5)
      return framework::OpKernelType(input_data_type, ctx.GetPlace());

#ifdef PADDLE_WITH_MKLDNN
    if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
558 559
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
560 561 562 563 564 565
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    if (input_data_type == framework::proto::VarType::FP16) {
566 567 568 569
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_mlu_place(ctx.GetPlace()),
570 571 572
          true,
          platform::errors::InvalidArgument(
              "float16 can only be used on GPU or NPU or MLU place"));
573 574 575
    }
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
576 577
};

G
Guo Sheng 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590
class ReduceOpUseInputPlace : public ReduceOp {
 public:
  using ReduceOp::ReduceOp;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx);
    kt.place_ = ctx.Input<framework::LoDTensor>("X")->place();
    return kt;
  }
};

591 592 593
class ReduceGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
W
whs 已提交
594

595
  void InferShape(framework::InferShapeContext* ctx) const override {
596
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "ReduceOp");
597 598 599 600
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "ReduceOp");
601 602 603
    auto x_dims = ctx->GetInputDim("X");
    auto x_rank = x_dims.size();
    auto dims = ctx->Attrs().Get<std::vector<int>>("dim");
W
whs 已提交
604
    for (size_t i = 0; i < dims.size(); ++i) {
605 606
      PADDLE_ENFORCE_LT(dims[i],
                        x_rank,
607 608 609 610
                        platform::errors::InvalidArgument(
                            "The reduce dim index %d should be in the "
                            "range [-dimension(X), dimension(X)], "
                            "which dimesion = %d. But received dim index = %d.",
611 612 613
                            i,
                            x_rank,
                            dims[i]));
W
whs 已提交
614
      if (dims[i] < 0) dims[i] = x_rank + dims[i];
615 616 617 618 619 620
    }
    sort(dims.begin(), dims.end());
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
W
whs 已提交
621
    }
622
  }
623 624 625 626

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
627
    int out_dtype = ctx.Attr<int>("out_dtype");
J
jakpiase 已提交
628
    auto input_data_type =
629 630 631 632
        (out_dtype >= 0)
            ? static_cast<framework::proto::VarType::Type>(out_dtype)
            : OperatorWithKernel::IndicateVarDataType(
                  ctx, framework::GradVarName("Out"));
633 634 635 636 637 638 639 640 641 642
#ifdef PADDLE_WITH_MKLDNN
    auto CanMKLDNNReduceGradBeUsed = [&]() {
      auto dx_dims = ctx.Input<Tensor>("X")->dims();

      if (dx_dims.size() > 5) return false;  // max 5D tensor is supported

      return true;
    };
    if (this->CanMKLDNNBeUsed(ctx, input_data_type) &&
        CanMKLDNNReduceGradBeUsed()) {
643 644
      return framework::OpKernelType(input_data_type,
                                     ctx.GetPlace(),
645 646 647 648 649 650
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace());
651
  }
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
};

class ReduceOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() final {
    AddInput("X",
             "(Tensor) The input tensor. Tensors with rank at most 6 are "
             "supported.");
    AddOutput("Out", "(Tensor) The result tensor.");
    AddAttr<std::vector<int>>(
        "dim",
        "(list<int>, default {0}) The dimensions to reduce. "
        "Must be in the range [-rank(input), rank(input)). "
        "If `dim[i] < 0`, the dims[i] to reduce is `rank + dims[i]`. "
        "Note that reducing on the first dim will make the LoD info lost.")
        .SetDefault({0});
    AddAttr<bool>("keep_dim",
                  "(bool, default false) "
                  "If true, retain the reduced dimension with length 1.")
        .SetDefault(false);
    AddAttr<bool>("reduce_all",
                  "(bool, default false) "
                  "If true, output a scalar reduced along all dimensions.")
        .SetDefault(false);
676 677 678 679 680 681 682 683 684 685
    AddAttr<int>("in_dtype",
                 "(int, default -1)"
                 "The dtype of input, default value is -1, the user could not "
                 "set this value.")
        .SetDefault(-1);
    AddAttr<int>(
        "out_dtype",
        "(int, default -1)"
        "The dtype of output, default value is -1, the dtype is same as intput")
        .SetDefault(-1);
686 687
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
688 689
        .SetDefault(false)
        .AsExtra();
690 691
    AddComment(string::Sprintf(R"DOC(
%s Operator.
W
whs 已提交
692

693 694 695
This operator computes the %s of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless keep_dim is true.
If reduce_all is true, just reduce along all dimensions and output a scalar.
W
whs 已提交
696

697
)DOC",
698 699
                               GetOpType(),
                               GetName()));
G
guosheng 已提交
700
  }
701 702 703 704

 protected:
  virtual std::string GetName() const = 0;
  virtual std::string GetOpType() const = 0;
G
guosheng 已提交
705 706
};

707
#if defined(__HIPCC__) || defined(__NVCC__) || defined(__xpu__)
708 709 710 711 712
template <typename T,
          template <typename>
          class ReduceOp,
          template <typename, typename>
          class TransformOp>
713 714 715 716 717 718 719
class ReduceCudaKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    const Tensor* input = context.Input<Tensor>("X");
    Tensor* output = context.Output<Tensor>("Out");
    auto out_dtype = context.Attr<int>("out_dtype");
720
    auto pt_out_dtype = paddle::framework::TransToPhiDataType(
721
        static_cast<framework::proto::VarType::Type>(out_dtype));
722
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
723 724 725 726
#ifdef PADDLE_WITH_XPU_KP
    auto& dev_ctx =
        context.template device_context<paddle::platform::XPUDeviceContext>();
#else
727
    auto& dev_ctx = context.cuda_device_context();
728
#endif
729
    if (out_dtype >= 0) {
730
      output->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
731
    } else {
732
      output->mutable_data(dev_ctx.GetPlace(), input->dtype());
733
    }
734 735 736

    std::vector<int64_t> dims_int64{dims.begin(), dims.end()};

737
    phi::Reduce<T, ReduceOp, TransformOp>(
738
        dev_ctx, *input, reduce_all, dims_int64, false, pt_out_dtype, output);
739 740
  }
};
741

742
#ifndef PADDLE_WITH_XPU_KP
743 744 745 746 747 748 749
template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
750

751 752 753 754
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
755
    auto pt_out_dtype = framework::TransToPhiDataType(
756
        static_cast<framework::proto::VarType::Type>(out_dtype));
757 758 759 760 761 762 763 764 765 766 767 768
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    // make new tensor
    framework::Tensor new_d_out(d_out->type());
    new_d_out.ShareDataWith(*d_out);
769
    new_d_out.Resize(phi::make_ddim(update_dims));
770 771
    auto& dev_ctx = context.cuda_device_context();
    if (out_dtype > 0) {
772
      d_x->mutable_data(dev_ctx.GetPlace(), pt_out_dtype);
773
    } else {
774
      d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());
775
    }
776 777
    auto pt_d_out = paddle::experimental::MakePhiDenseTensor(new_d_out);
    auto pt_d_x = paddle::experimental::MakePhiDenseTensor(*d_x);
778
    if (out_dtype <= 0) {
779
      pt_out_dtype = d_out->dtype();
780
    }
781

782
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
783
    phi::ReduceGrad<T, TransformOp<T, MPType>>(
784 785 786 787
        dev_ctx,
        pt_d_out.get(),
        pt_d_x.get(),
        pt_out_dtype,
788 789 790
        TransformOp<T, MPType>(reduce_num));
  }
};
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

template <typename T>
struct EqualFunctor {
  inline T initial() { return static_cast<T>(0.0f); }

  inline HOSTDEVICE T operator()(const T a, const T b) const {
    return static_cast<T>(a == b);
  }
};

template <typename T, typename Enable = void>
struct DivideFunctor {
  inline T initial() { return static_cast<T>(1.0f); }

  inline HOSTDEVICE T operator()(const T a, const T b) const { return a / b; }
};

template <typename T, template <typename, typename> class TransformOp>
class ReduceCudaAMaxAMinGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    bool reduce_all = context.Attr<bool>("reduce_all");
    std::vector<int> dims = context.Attr<std::vector<int>>("dim");
    auto* in_x = context.Input<Tensor>("X");
    auto* out_y = context.Input<Tensor>("Out");
    auto* d_out =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<framework::Tensor>(framework::GradVarName("X"));
    auto out_dtype = context.Attr<int>("in_dtype");
    auto pt_out_dtype = framework::TransToPhiDataType(
        static_cast<framework::proto::VarType::Type>(out_dtype));
    // get reduce_dim and reduce_num for reduce_mean_grad
    int dim_size = in_x->dims().size();
    std::vector<int> reduce_dims = GetReduceDim(dims, dim_size, reduce_all);
    auto update_dims = vectorize(d_x->dims());
    int reduce_num = 1;
    for (auto i : reduce_dims) {
      reduce_num *= (in_x->dims())[i];
      update_dims[i] = 1;
    }
    auto& dev_ctx = context.cuda_device_context();

    // make new tensor reduce_out
    phi::DenseTensor new_y(out_y->type());
    new_y.ShareDataWith(*out_y);
    new_y.Resize(phi::make_ddim(update_dims));

    // make new tensor d_out
    phi::DenseTensor new_dout(d_out->type());
    new_dout.ShareDataWith(*d_out);
    new_dout.Resize(phi::make_ddim(update_dims));
    d_x->mutable_data(dev_ctx.GetPlace(), d_out->dtype());

    auto new_in = paddle::experimental::MakePhiDenseTensor(*in_x);
    auto new_in_tensor = new_in.get();

    auto new_dx = paddle::experimental::MakePhiDenseTensor(*d_x);
    auto new_dx_tensor = new_dx.get();

    // make equal_out
    phi::DenseTensor* equal_out = new phi::DenseTensor();
    equal_out->Resize(in_x->dims());
    dev_ctx.template Alloc<T>(equal_out);
    auto equal_out_tensor = *equal_out;

    // make new tensor equal_count
    phi::DenseTensor* equal_count = new phi::DenseTensor();
    equal_count->Resize(phi::make_ddim(update_dims));
    dev_ctx.template Alloc<T>(equal_count);

    // compute
    // 1. equal_out = Equal(x, y)
    std::vector<const phi::DenseTensor*> equal_inputs = {&new_y, new_in_tensor};
    std::vector<phi::DenseTensor*> equal_outputs = {&equal_out_tensor};
    phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
        dev_ctx, equal_inputs, &equal_outputs, 0, EqualFunctor<T>());
    // 2. equal_count = reduceSum(equal_out)
    using MPType = typename kps::details::MPTypeTrait<T>::Type;
869 870 871 872 873 874 875 876
    phi::funcs::
        ReduceKernel<T, T, kps::AddFunctor, kps::IdentityFunctor<T, MPType>>(
            dev_ctx,
            equal_out_tensor,
            equal_count,
            kps::IdentityFunctor<T, MPType>(),
            reduce_dims,
            false);
877 878 879 880 881 882 883 884 885 886 887

    // 3. dx = Div(dout, equal_out)
    std::vector<const phi::DenseTensor*> grad_inputs = {&equal_out_tensor,
                                                        equal_count};
    std::vector<phi::DenseTensor*> grad_outputs = {new_dx_tensor};
    phi::funcs::BroadcastKernel<phi::ElementwiseType::kBinary, T, T>(
        dev_ctx, grad_inputs, &grad_outputs, 0, DivideFunctor<T>());
    delete equal_out;
    delete equal_count;
  }
};
888
#endif
889
#endif
890

G
guosheng 已提交
891 892
}  // namespace operators
}  // namespace paddle
893

894 895
namespace ops = paddle::operators;

H
hong 已提交
896 897 898 899 900 901 902
#define REGISTER_REDUCE_OP(op_name)                                           \
  class __##op_name##Maker__ : public ops::ReduceOpMaker {                    \
   protected:                                                                 \
    virtual std::string GetName() const { return #op_name; }                  \
    virtual std::string GetOpType() const { return "Reduce " #op_name; }      \
  };                                                                          \
  REGISTER_OPERATOR(                                                          \
903 904 905
      op_name,                                                                \
      ops::ReduceOp,                                                          \
      __##op_name##Maker__,                                                   \
H
hong 已提交
906 907 908 909 910 911
      paddle::framework::DefaultGradOpMaker<paddle::framework::OpDesc, true>, \
      paddle::framework::DefaultGradOpMaker<paddle::imperative::OpBase,       \
                                            true>);                           \
  REGISTER_OPERATOR(op_name##_grad, ops::ReduceGradOp)

#define REGISTER_REDUCE_OP_WITHOUT_GRAD(op_name, ...)                    \
912 913 914 915 916
  class __##op_name##Maker__ : public ops::ReduceOpMaker {               \
   protected:                                                            \
    virtual std::string GetName() const { return #op_name; }             \
    virtual std::string GetOpType() const { return "Reduce " #op_name; } \
  };                                                                     \
H
hong 已提交
917
  REGISTER_OPERATOR(                                                     \
918 919 920
      op_name,                                                           \
      ops::ReduceOp##__VA_ARGS__,                                        \
      __##op_name##Maker__,                                              \
H
hong 已提交
921 922
      paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,    \
      paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);