cumsum_op.cu 11.2 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
E
emailweixu 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <thrust/device_ptr.h>
#include <thrust/device_vector.h>
W
wangchaochaohu 已提交
17
#include <thrust/gather.h>
18 19
#include <thrust/reverse.h>
#include <thrust/scan.h>
W
wangchaochaohu 已提交
20
#include "cub/cub.cuh"
Y
Yi Wang 已提交
21
#include "paddle/fluid/operators/cum_op.h"
22
#include "paddle/fluid/platform/gpu_launch_config.h"
E
emailweixu 已提交
23

24 25 26 27 28 29
using Tensor = paddle::framework::Tensor;
using LoDTensor = paddle::framework::LoDTensor;

namespace paddle {
namespace operators {

W
wangchaochaohu 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
template <typename T, int BLOCK_SIZE>
__device__ void BlockReverse(const T* idata, T* odata, int src_base,
                             int dst_base, int valid_item) {
  __shared__ T sh_mem[BLOCK_SIZE];
  int tx = threadIdx.x;

  int offset = tx;
  int in_index = src_base + offset;
  if (offset >= valid_item) {
    sh_mem[offset] = 0;
  } else {
    int sh_mem_index = BLOCK_SIZE - offset - 1;
    T data = idata[in_index];
    sh_mem[sh_mem_index] = data;
  }

  __syncthreads();
  int out_index = dst_base - offset;
  if (offset < valid_item) {
    int sh_mem_index = BLOCK_SIZE - offset - 1;
    odata[out_index] = sh_mem[sh_mem_index];
51 52 53
  }
}

W
wangchaochaohu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
template <typename T>
__global__ void MatrixRowReverse(const T* matrix_data, T* reverse_data,
                                 int reverse_size, int outer_size,
                                 int inner_size) {
  int bx = blockIdx.x;
  int by = blockIdx.y;
  int item_per_block = 1024;

  for (int block_offset = 0; block_offset < reverse_size;
       block_offset += item_per_block) {
    int valid_item = (reverse_size - block_offset > item_per_block)
                         ? item_per_block
                         : reverse_size - block_offset;
    int src_offset =
        bx * reverse_size + block_offset + by * (inner_size * reverse_size);
    int dst_offset = bx * reverse_size + by * (inner_size * reverse_size) +
                     reverse_size - 1 - block_offset;
    if (reverse_size < item_per_block) {
      valid_item = reverse_size;
73 74
    }

W
wangchaochaohu 已提交
75 76
    BlockReverse<T, 1024>(matrix_data, reverse_data, src_offset, dst_offset,
                          valid_item);
77 78 79 80
  }
}

template <typename T>
W
wangchaochaohu 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93
struct BlockPrefixCallbackOp {
  // Running prefix
  T running_total;
  // Constructor
  __device__ BlockPrefixCallbackOp(T running_total)
      : running_total(running_total) {}
  // Callback operator to be entered by the first warp of threads in the block.
  // Thread-0 is responsible for returning a value for seeding the block-wide
  // scan.
  __device__ T operator()(T block_aggregate) {
    T old_prefix = running_total;
    running_total = old_prefix + block_aggregate;
    return old_prefix;
94
  }
W
wangchaochaohu 已提交
95
};
96

W
wangchaochaohu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
// No bank-conflict transpose
// Same as transposeCoalesced except the first tile dimension is padded
// to avoid shared memory bank conflicts.
template <typename T, int TILE_DIM, int BLOCK_ROWS>
__global__ void MatrixTranspose(T* odata, const T* idata, size_t height,
                                size_t width) {
  __shared__ T tile[TILE_DIM][TILE_DIM + 1];

  int x = blockIdx.x * TILE_DIM + threadIdx.x;
  int y = blockIdx.y * TILE_DIM + threadIdx.y;
  for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS) {
    if (x < width && (y + j) < height) {
      tile[threadIdx.y + j][threadIdx.x] = idata[(y + j) * width + x];
    } else {
      tile[threadIdx.y + j][threadIdx.x] = 0;
112 113
    }
  }
W
wangchaochaohu 已提交
114

115 116
  __syncthreads();

W
wangchaochaohu 已提交
117 118
  x = blockIdx.y * TILE_DIM + threadIdx.x;  // transpose block offset
  y = blockIdx.x * TILE_DIM + threadIdx.y;
E
emailweixu 已提交
119

W
wangchaochaohu 已提交
120 121 122
  for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS) {
    if (x < height && (y + j) < width) {
      odata[(y + j) * height + x] = tile[threadIdx.x][threadIdx.y + j];
123 124
    }
  }
W
wangchaochaohu 已提交
125
}
126

W
wangchaochaohu 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
template <typename T, int BLOCK_THREADS, int ITEMS_PER_THREAD>
__global__ void BlockScanKernel(T* d_out, const T* d_in, int inner_size,
                                int outer_size, int scan_size, bool exclusive) {
  // Specialize BlockLoad, BlockStore, and BlockRadixSort collective types
  typedef cub::BlockLoad<T, BLOCK_THREADS, ITEMS_PER_THREAD,
                         cub::BLOCK_LOAD_TRANSPOSE>
      BlockLoadT;
  typedef cub::BlockStore<T, BLOCK_THREADS, ITEMS_PER_THREAD,
                          cub::BLOCK_STORE_TRANSPOSE>
      BlockStoreT;
  typedef cub::BlockScan<T, BLOCK_THREADS> BlockScanT;
  // Allocate type-safe, repurposable shared memory for collectives
  __shared__ union {
    typename BlockLoadT::TempStorage load;
    typename BlockStoreT::TempStorage store;
    typename BlockScanT::TempStorage scan;
  } temp_storage;

  int bx = blockIdx.x;
  int by = blockIdx.y;

  BlockPrefixCallbackOp<T> prefix_op(0);
  T block_aggregate = static_cast<T>(0);

  // Obtain this block's segment of consecutive keys (blocked across threads)
  int item_per_block = BLOCK_THREADS * ITEMS_PER_THREAD;
  for (int block_offset = 0; block_offset < scan_size;
       block_offset += BLOCK_THREADS * ITEMS_PER_THREAD) {
    int valid_item = (scan_size - block_offset > item_per_block)
                         ? item_per_block
                         : (scan_size - block_offset);
    if (scan_size < item_per_block) {
      valid_item = scan_size;
    }
161

W
wangchaochaohu 已提交
162
    int offset = bx * scan_size + block_offset + by * (inner_size * scan_size);
163

W
wangchaochaohu 已提交
164 165 166
    T thread_keys[ITEMS_PER_THREAD];
    BlockLoadT(temp_storage.load)
        .Load(d_in + offset, thread_keys, valid_item, 0);
167

W
wangchaochaohu 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
    __syncthreads();
    if (exclusive) {
      T init_value = static_cast<T>(0);
      BlockScanT(temp_storage.scan)
          .ExclusiveScan(thread_keys, thread_keys, cub::Sum(), prefix_op);
    } else {
      BlockScanT(temp_storage.scan)
          .InclusiveScan(thread_keys, thread_keys, cub::Sum(), prefix_op);
    }
    __syncthreads();

    BlockStoreT(temp_storage.store)
        .Store(d_out + offset, thread_keys, valid_item);
181 182 183 184 185 186 187 188 189 190 191 192 193
  }
}

template <typename DeviceContext, typename T>
class CumCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<framework::Tensor>("X");
    auto* out = context.Output<framework::Tensor>("Out");

    int axis = context.Attr<int>("axis");
    bool exclusive = context.Attr<bool>("exclusive");
    bool reverse = context.Attr<bool>("reverse");
194
    auto out_dims = out->dims();
195 196
    auto size = in->numel();

197 198 199 200 201 202 203 204
    PADDLE_ENFORCE_EQ(
        axis < out_dims.size() && axis >= (0 - out_dims.size()), true,
        platform::errors::OutOfRange(
            "Attr(axis) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(axis) = %d.",
            out_dims.size(), out_dims.size() - 1, axis));
    if (axis < 0) {
      axis += out_dims.size();
205
    }
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    T* out_data = out->mutable_data<T>(context.GetPlace());
    const T* in_data = in->data<T>();

    // Use thrust for parallel acceleration when the input size is equal to the
    // length of the ‘axis’ dimension.
    if (size == out_dims[axis]) {
      if (reverse) {
        thrust::device_ptr<const T> dev_ptr =
            thrust::device_pointer_cast(in_data);
        thrust::device_vector<T> vec(dev_ptr, dev_ptr + size);
        if (exclusive) {
          thrust::exclusive_scan(thrust::device, vec.rbegin(), vec.rend(),
                                 out_data);
        } else {
          thrust::inclusive_scan(thrust::device, vec.rbegin(), vec.rend(),
                                 out_data);
        }
        thrust::reverse(thrust::device, out_data, out_data + size);
      } else {
        if (exclusive) {
          thrust::exclusive_scan(thrust::device, in_data, in_data + size,
                                 out_data);
        } else {
          thrust::inclusive_scan(thrust::device, in_data, in_data + size,
                                 out_data);
        }
      }
      return;
    }

W
wangchaochaohu 已提交
237 238 239 240
    size_t height = 1;
    size_t width = 1;
    for (size_t i = 0; i <= axis; i++) {
      height *= out_dims[i];
241
    }
W
wangchaochaohu 已提交
242

243
    for (size_t i = axis + 1; i < out_dims.size(); i++) {
W
wangchaochaohu 已提交
244
      width *= out_dims[i];
245
    }
W
wangchaochaohu 已提交
246 247
    int scan_size = out_dims[axis];
    bool transpose = (axis != out_dims.size() - 1);
248

W
wangchaochaohu 已提交
249 250 251 252
    int tile_size = 32;
    dim3 blocks(32, 8);
    dim3 transpose_grids((width + tile_size - 1) / tile_size,
                         (height + tile_size - 1) / tile_size);
253
    auto& dev_ctx = context.template device_context<DeviceContext>();
W
wangchaochaohu 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
    Tensor tmp;
    tmp.Resize(out_dims);
    auto* tmp_data = tmp.mutable_data<T>(context.GetPlace());
    T* next_in_data = out_data;
    T* next_out_data = tmp_data;
    if (transpose) {
      MatrixTranspose<T, 32,
                      8><<<transpose_grids, blocks, 0, dev_ctx.stream()>>>(
          out_data, in_data, height, width);
      next_in_data = out_data;
      next_out_data = tmp_data;
    }
    auto swap_ptr = [](T*& ptr1, T*& ptr2) {
      T* tmp = ptr2;
      ptr2 = ptr1;
      ptr1 = tmp;
    };
    int outer_size = height / scan_size;
    int inner_size = width;
    // Consider the size of shared memory, here block size is 128
    dim3 scan_grid(outer_size, inner_size);
    dim3 reverse_grid = scan_grid;
    if (reverse) {
      if (transpose) {
        reverse_grid.x = scan_grid.y;
        reverse_grid.y = scan_grid.x;
        MatrixRowReverse<T><<<reverse_grid, 1024, 0, dev_ctx.stream()>>>(
            next_in_data, next_out_data, scan_size, outer_size, inner_size);
        if (!transpose) next_in_data = tmp_data;
        swap_ptr(next_in_data, next_out_data);
284
      } else {
W
wangchaochaohu 已提交
285 286
        MatrixRowReverse<T><<<reverse_grid, 1024, 0, dev_ctx.stream()>>>(
            in_data, out_data, scan_size, outer_size, inner_size);
287
      }
W
wangchaochaohu 已提交
288 289 290 291 292
    }
    if (!transpose && !reverse) {
      BlockScanKernel<T, 128, 4><<<scan_grid, 128, 0, dev_ctx.stream()>>>(
          out_data, in_data, outer_size, inner_size, scan_size, exclusive);

293
    } else {
W
wangchaochaohu 已提交
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
      BlockScanKernel<T, 128, 4><<<scan_grid, 128, 0, dev_ctx.stream()>>>(
          next_out_data, next_in_data, outer_size, inner_size, scan_size,
          exclusive);
    }
    swap_ptr(next_in_data, next_out_data);
    if (reverse) {
      MatrixRowReverse<T><<<reverse_grid, 1024, 0, dev_ctx.stream()>>>(
          next_in_data, next_out_data, scan_size, outer_size, inner_size);
      swap_ptr(next_in_data, next_out_data);
    }
    if (transpose) {
      transpose_grids.x = (height + tile_size - 1) / tile_size;
      transpose_grids.y = (width + tile_size - 1) / tile_size;
      MatrixTranspose<T, 32,
                      8><<<transpose_grids, blocks, 0, dev_ctx.stream()>>>(
          next_out_data, next_in_data, width, height);
310 311 312 313 314 315 316 317 318 319 320 321
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    cumsum, ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, float>,
    ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, double>,
    ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, int>,
    ops::CumCUDAKernel<paddle::platform::CUDADeviceContext, int64_t>);