cumsum_kernel.cc 4.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/cumsum_kernel.h"

#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"

namespace phi {

struct CumsumFunctor {
  template <typename X>
  const typename X::TensorScanSumOp operator()(X x,
                                               int axis,
                                               bool exclusive) const {
    return x.cumsum(axis, exclusive);
  }
};

template <typename Device, typename Dim, typename X, typename Out>
void ComputeImp(Device d,
                const Dim& dims,
                X x,
                Out out,
                int axis,
                bool reverse,
                bool exclusive) {
  if (!reverse) {
    out.reshape(dims).device(d) =
        CumsumFunctor()(x.reshape(dims), axis, exclusive);
  } else {
    std::array<bool, Dim::count> rev;
    rev.fill(false);
    rev[axis] = reverse;
    out.reshape(dims).device(d) =
        CumsumFunctor()(x.reshape(dims).reverse(rev), axis, exclusive)
            .reverse(rev);
  }
}

template <typename T, typename Context>
void CumsumKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  int axis,
                  bool flatten,
                  bool exclusive,
                  bool reverse,
                  DenseTensor* out) {
  auto out_dims = out->dims();

  PADDLE_ENFORCE_EQ(
      axis < out_dims.size() && axis >= (0 - out_dims.size()),
      true,
      phi::errors::OutOfRange(
          "Attr(axis) is out of range, It's expected "
          "to be in range of [-%d, %d]. But received Attr(axis) = %d.",
          out_dims.size(),
          out_dims.size() - 1,
          axis));
  if (axis < 0) {
    axis += out_dims.size();
  }

  dev_ctx.template Alloc<T>(out);

  int pre = 1;
  int post = 1;
  int mid = out_dims[axis];
  for (int i = 0; i < axis; ++i) {
    pre *= out_dims[i];
  }
  for (int i = axis + 1; i < out_dims.size(); ++i) {
    post *= out_dims[i];
  }

  auto x0 = EigenVector<T>::Flatten(x);
  auto out0 = EigenVector<T>::Flatten(*out);
  auto& place = *dev_ctx.eigen_device();

  using IndexT = Eigen::DenseIndex;
  if (pre == 1) {
    if (post == 1) {
      ComputeImp(place,
                 Eigen::DSizes<IndexT, 1>(mid),
                 x0,
                 out0,
                 /* axis= */ 0,
                 reverse,
                 exclusive);
    } else {
      ComputeImp(place,
                 Eigen::DSizes<IndexT, 2>(mid, post),
                 x0,
                 out0,
                 /* axis= */ 0,
                 reverse,
                 exclusive);
    }
  } else {
    if (post == 1) {
      ComputeImp(place,
                 Eigen::DSizes<IndexT, 2>(pre, mid),
                 x0,
                 out0,
                 /* axis= */ 1,
                 reverse,
                 exclusive);
    } else {
      ComputeImp(place,
                 Eigen::DSizes<IndexT, 3>(pre, mid, post),
                 x0,
                 out0,
                 /* axis= */ 1,
                 reverse,
                 exclusive);
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(cumsum,
                   CPU,
                   ALL_LAYOUT,
                   phi::CumsumKernel,
                   float,
                   double,
                   int16_t,
                   int,
                   int64_t) {}