affine_channel_op.cc 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
Zeng Jinle 已提交
15 16
#include <string>
#include <unordered_map>
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

class AffineChannelOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) Feature map input can be a 4D tensor with order NCHW "
             "or NHWC. It also can be a 2D tensor and C is the second "
             "dimension.");
    AddInput("Scale",
             "(Tensor) 1D input of shape (C), the c-th element "
             "is the scale factor of the affine transformation "
             "for the c-th channel of the input.");
    AddInput("Bias",
             "(Tensor) 1D input of shape (C), the c-th element "
             "is the bias of the affine transformation for the "
             "c-th channel of the input.");
    AddAttr<std::string>(
        "data_layout",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
    AddOutput("Out", "(Tensor) A tensor of the same shape and order with X.");
    AddComment(R"DOC(

Applies a separate affine transformation to each channel of the input. Useful
for replacing spatial batch norm with its equivalent fixed transformation.
The input also can be 2D tensor and applies a affine transformation in second
dimension.

$$Out = Scale*X + Bias$$

)DOC");
  }
};

class AffineChannelOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of AffineChannelOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Scale"),
                   "Input(Scale) of AffineChannelOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
                   "Input(Bias) of AffineChannelOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of AffineChannelOp should not be null.");
72 73 74 75 76 77 78 79 80 81 82 83 84

    auto x_dims = ctx->GetInputDim("X");
    auto scale_dims = ctx->GetInputDim("Scale");
    auto b_dims = ctx->GetInputDim("Bias");
    const framework::DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));

    const int64_t C = (data_layout == framework::DataLayout::kNCHW
                           ? x_dims[1]
                           : x_dims[x_dims.size() - 1]);

    PADDLE_ENFORCE_EQ(scale_dims.size(), 1UL);
    PADDLE_ENFORCE_EQ(b_dims.size(), 1UL);
T
tink2123 已提交
85
    if (ctx->IsRuntime() || scale_dims[0] > 0) {
T
tink2123 已提交
86
      PADDLE_ENFORCE_EQ(scale_dims[0], C);
T
tink2123 已提交
87 88
    }
    if (ctx->IsRuntime() || b_dims[0] > 0) {
T
tink2123 已提交
89 90
      PADDLE_ENFORCE_EQ(b_dims[0], C);
    }
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
    ctx->ShareLoD("X", "Out");
  }
};

class AffineChannelOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null.");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      PADDLE_ENFORCE(ctx->HasInput("Scale"),
                     "Input(Scale) should not be null.");
      ctx->SetOutputDim(framework::GradVarName("X"),
                        ctx->GetInputDim(framework::GradVarName("Out")));
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      // Scale@GRAD and Bias@GRAD must exist at the same time.
      PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")),
                     "Output(Scale@GRAD) should not be null.");
      PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null.");
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Scale"));
    }
  }
Z
Zeng Jinle 已提交
120 121 122 123

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
124 125 126
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
Z
Zeng Jinle 已提交
127
  }
128 129
};

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
class AffineChannelGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("affine_channel_grad");
    op->SetInput("X", Input("X"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    op->SetInput("Scale", Input("Scale"));

    op->SetAttrMap(Attrs());

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
template <typename T>
using EigenArrayMap =
    Eigen::Map<Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using ConstEigenArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic>>;
template <typename T>
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<T, Eigen::Dynamic, 1>>;
template <typename T>
using ConstEigenVectorArrayMap =
    Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>>;

template <typename DeviceContext, typename T>
class AffineChannelKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* y = ctx.Output<framework::Tensor>("Out");
    y->mutable_data<T>(ctx.GetPlace());

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));

    auto dims = x->dims();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = x->numel() / N / C;

    auto* scale_d = scale->data<T>();
    auto* bias_d = bias->data<T>();
    ConstEigenVectorArrayMap<T> a_e(scale_d, C);
    ConstEigenVectorArrayMap<T> b_e(bias_d, C);

    auto* x_d = x->data<T>();
    auto* y_d = y->data<T>();
    if (layout == framework::DataLayout::kNCHW) {
      int stride = C * HxW;
      for (int i = 0; i < N; i++) {
        ConstEigenArrayMap<T> x_e(x_d, HxW, C);
        EigenArrayMap<T> y_e(y_d, HxW, C);
        y_e = (x_e.rowwise() * a_e.transpose()).rowwise() + b_e.transpose();
        x_d += stride;
        y_d += stride;
      }
    } else {
      int num = N * HxW;
      ConstEigenArrayMap<T> x_e(x_d, C, num);
      EigenArrayMap<T> y_e(y_d, C, num);
      y_e = (x_e.colwise() * a_e).colwise() + b_e;
    }
  }
};

template <typename DeviceContext, typename T>
class AffineChannelGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dscale =
        ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));

    auto dims = x->dims();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = x->numel() / N / C;

    auto* dy_d = dy->data<T>();
    auto* scale_d = scale->data<T>();
    ConstEigenVectorArrayMap<T> scale_e(scale_d, C);

    T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* dscale_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* dbias_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;
    EigenVectorArrayMap<T> dscale_e(dscale_d, C);
    EigenVectorArrayMap<T> dbias_e(dbias_d, C);

    if (layout == framework::DataLayout::kNCHW) {
      // compute dscale and dbias
242 243
      int stride = C * HxW;
      auto* original_dy_d = dy_d;
244
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
245
        auto* x_d = x->data<T>();
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
        for (int i = 0; i < N; i++) {
          ConstEigenArrayMap<T> x_e(x_d, HxW, C);
          ConstEigenArrayMap<T> dy_e(dy_d, HxW, C);
          if (i == 0) {
            dscale_e = (x_e * dy_e).colwise().sum();
          } else {
            dscale_e += (x_e * dy_e).colwise().sum();
          }
          if (i == 0) {
            dbias_e = dy_e.colwise().sum();
          } else {
            dbias_e += dy_e.colwise().sum();
          }
          x_d += stride;
          dy_d += stride;
        }
      }
263

264 265
      // compute dx
      if (dx) {
266 267 268 269 270 271 272 273
        dy_d = original_dy_d;
        for (int i = 0; i < N; i++) {
          ConstEigenArrayMap<T> dy_e(dy_d, HxW, C);
          EigenArrayMap<T> dx_e(dx_d, HxW, C);
          dx_e = dy_e.rowwise() * scale_e.transpose();
          dy_d += stride;
          dx_d += stride;
        }
274
      }
275 276 277
    } else {
      int num = N * HxW;
      ConstEigenArrayMap<T> dy_e(dy_d, C, num);
278 279
      // compute dscale and dbias
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
280
        auto* x_d = x->data<T>();
281 282 283 284
        ConstEigenArrayMap<T> x_e(x_d, C, num);
        dscale_e = (x_e * dy_e).rowwise().sum();
        dbias_e = dy_e.rowwise().sum();
      }
285 286 287 288 289 290

      // compute dx
      if (dx) {
        EigenArrayMap<T> dx_e(dx_d, C, num);
        dx_e = dy_e.colwise() * scale_e;
      }
291 292 293 294
    }
  }
};

Z
Zeng Jinle 已提交
295 296 297 298 299 300
class AffineChannelNoNeedBufferVarsInference
    : public framework::NoNeedBufferVarsInference {
 public:
  using framework::NoNeedBufferVarsInference::NoNeedBufferVarsInference;

 private:
301 302 303 304
  inline bool HasOutput(const std::string& name) const {
    auto& outputs = Outputs();
    auto iter = outputs.find(name);
    if (iter == outputs.end() || iter->second.empty()) {
Z
Zeng Jinle 已提交
305 306 307 308 309 310 311
      return false;
    } else {
      return iter->second[0] != framework::kEmptyVarName;
    }
  }

 public:
312 313 314
  std::unordered_set<std::string> operator()() const override {
    if (!HasOutput(framework::GradVarName("Scale")) &&
        !HasOutput(framework::GradVarName("Bias"))) {
Z
Zeng Jinle 已提交
315 316 317 318 319 320 321
      return {"X"};
    } else {
      return {};
    }
  }
};

322 323 324 325 326
DECLARE_INPLACE_OP_INFERER(AffineChannelInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(AffineChannelGradInplaceInferer,
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});

327 328 329 330 331 332 333
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CPU = paddle::platform::CPUDeviceContext;

REGISTER_OPERATOR(affine_channel, ops::AffineChannelOp,
334 335
                  ops::AffineChannelOpMaker, ops::AffineChannelGradMaker,
                  ops::AffineChannelInplaceInferer);
Z
Zeng Jinle 已提交
336
REGISTER_OPERATOR(affine_channel_grad, ops::AffineChannelOpGrad,
337 338
                  ops::AffineChannelNoNeedBufferVarsInference,
                  ops::AffineChannelGradInplaceInferer);
339 340 341 342 343 344

REGISTER_OP_CPU_KERNEL(affine_channel, ops::AffineChannelKernel<CPU, float>,
                       ops::AffineChannelKernel<CPU, double>);
REGISTER_OP_CPU_KERNEL(affine_channel_grad,
                       ops::AffineChannelGradKernel<CPU, float>,
                       ops::AffineChannelGradKernel<CPU, double>);