LayerGradUtil.cpp 25.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "LayerGradUtil.h"

P_DECLARE_bool(thread_local_rand_use_global_seed);

namespace paddle {
real getCostSum(LayerPtr& testLayer, MatrixPtr weights) {
  testLayer->forward(PASS_GC);
  std::vector<Argument> outArgs;
  outArgs.push_back(testLayer->getOutput());
  if (weights) {
    outArgs[0].value->dotMul(*outArgs[0].value, *weights);
  }
  return Argument::sumCosts(outArgs);
}

real getDiffAndPrint(real newCost1, real newCost2, real callbackCount,
                     char fill, string testLayerName, string name, real step,
                     real delta) {
  EXPECT_FALSE(std::isnan(newCost1));
  EXPECT_FALSE(std::isnan(newCost2));

  real trueDelta = (newCost1 - newCost2) * (callbackCount / 2.);
  real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
  LOG(INFO) << setiosflags(ios::left) << setfill(fill) << setw(20)
            << testLayerName << " " << setw(20) << name << "step=" << setw(15)
            << step << "cost1=" << setw(10) << newCost1 << "cost2=" << setw(10)
            << newCost2 << "true_delta=" << setw(15) << trueDelta
            << "analytic_delta=" << setw(15) << delta << "diff=" << diff
            << (abs(diff) > 0.01 ? " ***" : "");
  if (fabs(diff - 1) < 0.02) {
    LOG(INFO) << "The previous diff might be caused by not accumulating"
              << " parameter gradients in backward()";
  }
  return diff;
}

void testState(LayerPtr testLayer, vector<DataLayerPtr>& dataLayers,
               vector<Argument>& datas) {
  auto batchSize = datas[0].getBatchSize();
  Argument data;
  ICpuGpuVectorPtr sequenceStartPositions =
      ICpuGpuVector::create(2, /* useGpu= */ false);
  sequenceStartPositions->getMutableData(false)[0] = 0;
  sequenceStartPositions->getMutableData(false)[1] = batchSize;
  data.sequenceStartPositions = sequenceStartPositions;
  testLayer->resetState();
  for (size_t j = 0; j < datas.size(); ++j) {
    if (datas[j].value) {
      data.value = datas[j].value;
    }
    if (datas[j].ids) {
      data.ids = datas[j].ids;
    }
    dataLayers[j]->setData(data);
    dataLayers[j]->forward(PASS_TEST);
  }
  testLayer->forward(PASS_TEST);
  Argument batchOut;
  batchOut.resizeAndCopyFrom(testLayer->getOutput(), /* useGpu= */ false);

  sequenceStartPositions->getMutableData(false)[1] = 1;
  testLayer->resetState();

  auto testLayerState = [&](int batchId) {
    for (size_t j = 0; j < datas.size(); ++j) {
      if (datas[j].value) {
        data.value = datas[j].value->subMatrix(batchId, 1);
      }
      if (datas[j].ids) {
        data.ids = IVector::create(datas[j].ids->getData() + batchId, 1,
                                   FLAGS_use_gpu);
      }
      dataLayers[j]->setData(data);
      dataLayers[j]->forward(PASS_TEST);
    }

    testLayer->forward(PASS_TEST);
    Argument out;
    out.resizeAndCopyFrom(testLayer->getOutput(), /* useGpu= */ false);
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
    if (batchOut.value) {
      size_t dim = batchOut.value->getWidth();
      ASSERT_TRUE((bool)out.value);
      EXPECT_EQ(dim, out.value->getWidth());
      EXPECT_EQ(1UL, out.value->getHeight());
      auto ret = std::mismatch(batchOut.value->getData() + batchId * dim,
                               batchOut.value->getData() + (batchId + 1) * dim,
                               out.value->getData());
      if (ret.second != out.value->getData() + dim) {
        // If reaches here, the test will fail
        EXPECT_EQ(*ret.first, *ret.second);
      }
    } else if (batchOut.ids) {
      ASSERT_TRUE((bool)out.ids);
      EXPECT_EQ(1UL, out.ids->getSize());
      EXPECT_EQ(batchOut.ids->getElement(batchId), out.ids->getElement(0));
    }
  };

  CHECK_GT(batchSize, 0);
  std::vector<LayerStatePtr> statePtrs;
  statePtrs.reserve(batchSize);

  // Test layer setState() and getState()
  for (int i = 0; i < batchSize; ++i) {
    statePtrs.push_back(testLayer->getState());
    testLayerState(i);
  }
  for (int k = 0; k < batchSize - 1; ++k) {
    testLayer->setState(statePtrs[k]);
    for (int i = k; i < batchSize; ++i) {
      testLayerState(i);
    }
  }
}

void testBatchState(LayerPtr testLayer, vector<DataLayerPtr>& dataLayers,
                    vector<Argument>& datas) {
  auto batchSize = datas[0].getBatchSize();
  Argument data;
  /*two sequences*/
  size_t numSequences = 2;
  ICpuGpuVectorPtr sequenceStartPositions =
      ICpuGpuVector::create(numSequences + 1, /* useGpu= */ false);
  int* cpuStarts = sequenceStartPositions->getMutableData(false);
  int len = ::rand() % (batchSize - 1);
  cpuStarts[0] = 0;
  cpuStarts[1] = len > 0 ? len : 1;
  cpuStarts[2] = batchSize;

  data.sequenceStartPositions = sequenceStartPositions;
  for (size_t j = 0; j < datas.size(); ++j) {
    if (datas[j].value) {
      data.value = datas[j].value;
    }
    if (datas[j].ids) {
      data.ids = datas[j].ids;
    }
    dataLayers[j]->setData(data);
    dataLayers[j]->forward(PASS_TEST);
  }
  testLayer->resetState();
  testLayer->forward(PASS_TEST);
  Argument batchOut;
  batchOut.resizeAndCopyFrom(testLayer->getOutput(), /* useGpu= */ false);

  /*split one miniBatch into two miniBatchs*/
  std::vector<int> seqSplitPos;
  for (size_t seqId = 0; seqId < numSequences; ++seqId) {
    int len = ::rand() % (cpuStarts[seqId + 1] - cpuStarts[seqId]);
    len = len > 0 ? len : 1;
    seqSplitPos.push_back(cpuStarts[seqId] + len);
  }

  std::vector<int> start; /*seq start pos in source data*/
  for (size_t seqId = 0; seqId < numSequences; ++seqId) {
    start.push_back(cpuStarts[seqId]);
  }
  testLayer->resetState();
  Argument splitData;
  for (size_t batchId = 0; batchId < 2; ++batchId) {
    size_t splitBatchSize = 0;
    std::vector<int> seqLens;
    for (size_t seqId = 0; seqId < numSequences; ++seqId) {
      int seqLen = (batchId == 0) ? seqSplitPos[seqId] - cpuStarts[seqId]
                                  : cpuStarts[seqId + 1] - seqSplitPos[seqId];
      seqLens.push_back(seqLen);
      splitBatchSize += seqLen;
    }
    ICpuGpuVectorPtr cpuSeqStartPos =
        ICpuGpuVector::create(3, /* useGpu= */ false);
    int* seqStartPosData = cpuSeqStartPos->getMutableData(false);
    seqStartPosData[0] = 0;
    seqStartPosData[1] = seqLens[0];
    seqStartPosData[2] = splitBatchSize;

    CHECK_GT(splitBatchSize, size_t(0));
    splitData.sequenceStartPositions = cpuSeqStartPos;
    for (size_t j = 0; j < datas.size(); ++j) {
      if (datas[j].value) {
        Matrix::resizeOrCreate(splitData.value, splitBatchSize,
                               datas[j].value->getWidth(), false,
                               FLAGS_use_gpu);
        for (size_t seqId = 0; seqId < numSequences; ++seqId) {
          if (seqLens[seqId]) {
            splitData.value->subMatrix(seqStartPosData[seqId], seqLens[seqId])
                ->copyFrom(
                    *datas[j].value->subMatrix(start[seqId], seqLens[seqId]));
          }
        }
      }
      if (datas[j].ids) {
        IVector::resizeOrCreate(splitData.ids, splitBatchSize, FLAGS_use_gpu);
        for (size_t seqId = 0; seqId < numSequences; ++seqId) {
          if (seqLens[seqId]) {
            splitData.ids->subVec(seqStartPosData[seqId], seqLens[seqId])
                ->copyFrom(*datas[j].ids->subVec(start[seqId], seqLens[seqId]));
          }
        }
      }
      dataLayers[j]->setData(splitData);
      dataLayers[j]->forward(PASS_TEST);
    }

    testLayer->forward(PASS_TEST);
    Argument out;
    out.resizeAndCopyFrom(testLayer->getOutput(), /* useGpu= */ false);
    hl_stream_synchronize(HPPL_STREAM_DEFAULT);
    if (batchOut.value) {
      size_t dim = batchOut.value->getWidth();
      ASSERT_TRUE((bool)out.value);
      EXPECT_EQ(dim, out.value->getWidth());
      for (size_t seqId = 0; seqId < numSequences; ++seqId) {
        if (seqLens[seqId]) {
          out.value->subMatrix(seqStartPosData[seqId], seqLens[seqId])
              ->sub(*batchOut.value->subMatrix(start[seqId], seqLens[seqId]));
        }
      }
    }

    std::vector<Argument> args;
    args.push_back(out);
    EXPECT_EQ(0, Argument::sumCosts(args)) << "testBatchState failed";
    for (size_t seqId = 0; seqId < numSequences; ++seqId) {
      start[seqId] += seqLens[seqId];
    }
  }
}

double genPerturbation(const real* oldGrad, real* newGrad, size_t dim) {
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    newGrad[i] = 2. * rand() / RAND_MAX - 1;  // NOLINT
    dNorm += newGrad[i] * newGrad[i];
    gradNorm += oldGrad[i] * oldGrad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      newGrad[i] = s * newGrad[i] + oldGrad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += oldGrad[i] * newGrad[i];
  }
  return delta;
}

void initWeight(MatrixPtr& weights) {
  MatrixPtr tmpMat = weights->clone();
  for (int i = 0; i < int(tmpMat->getElementCnt()); i++) {
    tmpMat->getData()[i] = (11 - 2 * (i % 11));
  }
  weights->copyFrom(*tmpMat);
}

void initBatchState(LayerPtr dataLayer, LayerPtr testLayer,
                    LayerStatePtr state, bool useGpu) {
  int sequenceNum = dataLayer->getOutput().getNumSequences();
  MatrixPtr prevBatchOutput =
      Matrix::create(sequenceNum, testLayer->getSize(), false, useGpu);
  MatrixPtr prevBatchState =
      Matrix::create(sequenceNum, testLayer->getSize(), false, useGpu);
  prevBatchOutput->randomizeUniform();
  prevBatchState->randomizeUniform();
  state->value.clear();
  state->value.push_back(prevBatchOutput);
  state->value.push_back(prevBatchState);
}

void initDataLayer(TestConfig testConf, std::vector<DataLayerPtr>* dataLayers,
                   vector<Argument>* datas, LayerMap* layerMap,
                   string testLayerName, size_t batchSize, bool trans,
                   bool useGpu) {
  ICpuGpuVectorPtr sequenceStartPositions;
  ICpuGpuVectorPtr subSequenceStartPositions;
  IVectorPtr cpuSequenceDims;
  for (size_t i = 0; i < testConf.inputDefs.size(); i++) {
    LayerConfig config;
    config.set_name(testConf.inputDefs[i].name);
    config.set_type("data");
    config.set_size(testConf.inputDefs[i].dim);
    LayerPtr layer = LayerPtr(new DataLayer(config));
    size_t numSequence = batchSize / 10 + 1;

    Argument data;
    auto fillData = [&](bool trans, int height, int width) {
      int newHeight = trans ? height : width;
      int newWidth = trans ? width : height;
      data.value = Matrix::create(newHeight, newWidth, false, useGpu);
      data.grad = Matrix::create(newHeight, newWidth, false, useGpu);
    };
    switch (testConf.inputDefs[i].inputType) {
      case INPUT_DATA:
      case INPUT_SEQUENCE_DATA:
      case INPUT_HASSUB_SEQUENCE_DATA:
      case INPUT_DATA_TARGET:
      case INPUT_SEQUENCE_MDIM_DATA:
        fillData(trans, layer->getSize(), batchSize);
        data.value->randomizeUniform();
        // make sure that multi-class-cross-entry won't encounter negatives
        // make sure that multi_binary_label satisfies 0~1
        data.value->add(-0.5);
        if (testLayerName != "prelu") {
          data.value->sigmoid(*data.value);
        }
        data.grad->zeroMem();
        break;
      case INPUT_LABEL:
      case INPUT_SEQUENCE_LABEL:
        data.ids = VectorT<int>::create(batchSize, useGpu);
        // now rand number can be 0 to inputDefs[i].dim
        data.ids->rand(testConf.inputDefs[i].dim);
        break;
      case INPUT_SPARSE_NON_VALUE_DATA:
        data.value = makeRandomSparseMatrix(
            batchSize, layer->getSize(),
            /* withValue= */ false, useGpu,
            testConf.inputDefs[i].sparse.equalNnzPerSample);
        break;
      case INPUT_SPARSE_FLOAT_VALUE_DATA:
        data.value = makeRandomSparseMatrix(batchSize, layer->getSize(),
                                            /* withValue= */ true, useGpu);
        break;
      case INPUT_DENSE_DIM_DATA:
        fillData(trans, layer->getSize(), numSequence);
        data.value->randomizeUniform();
        data.value->add(-0.5);
        data.value->sigmoid(*data.value);
        data.grad->zeroMem();
        break;
      default:
        LOG(FATAL) << " unknown inputType ";
        return;
    }
    if (testConf.inputDefs[i].inputType == INPUT_SEQUENCE_DATA ||
        testConf.inputDefs[i].inputType == INPUT_HASSUB_SEQUENCE_DATA ||
        testConf.inputDefs[i].inputType == INPUT_SEQUENCE_LABEL ||
        testConf.inputDefs[i].inputType == INPUT_SEQUENCE_MDIM_DATA) {
      if (!sequenceStartPositions) {
        generateSequenceStartPositions(batchSize, sequenceStartPositions);
      }
      data.sequenceStartPositions = sequenceStartPositions;
    }
    if (testConf.inputDefs[i].inputType == INPUT_HASSUB_SEQUENCE_DATA) {
      if (!subSequenceStartPositions) {
        generateSubSequenceStartPositions(sequenceStartPositions,
                                          subSequenceStartPositions);
      }
      data.subSequenceStartPositions = subSequenceStartPositions;
    }
    if (testConf.inputDefs[i].inputType == INPUT_SEQUENCE_MDIM_DATA) {
      if (!cpuSequenceDims) {
        generateMDimSequenceData(sequenceStartPositions, cpuSequenceDims);
      }
      data.cpuSequenceDims = cpuSequenceDims;
    }

    DataLayerPtr dataLayer = std::dynamic_pointer_cast<DataLayer>(layer);
    dataLayer->setData(data);
    dataLayer->forward(PASS_GC);
    dataLayers->push_back(dataLayer);
    (*layerMap)[config.name()] = layer;
    datas->push_back(data);
  }
}

void initTestLayer(TestConfig testConf, LayerMap* layerMap,
                   std::vector<ParameterPtr>* parameters, LayerPtr* testLayer) {
  ParameterMap parameterMap;
  size_t index = 0;
  LayerConfig testConfig = testConf.layerConfig;
  CHECK_EQ(testConf.inputDefs.size(),
           size_t(testConf.layerConfig.inputs_size()));

  auto initParameter = [&](string paraName, size_t paraSize, bool isStatic,
                           bool initialize, ParameterConfig paraConfig) {
    paraConfig.set_name(paraName);
    paraConfig.set_size(paraSize);
    paraConfig.set_initial_std(1);
    paraConfig.set_is_static(isStatic);
    auto para =
        std::make_shared<Parameter>(paraConfig, FLAGS_use_gpu, initialize);
    para->enableType(PARAMETER_VALUE);
    if (!para->isStatic()) {
      para->enableType(PARAMETER_GRADIENT);
      para->enableType(PARAMETER_MOMENTUM);
    }
    para->randomize();
    para->setID(index++);
    parameters->push_back(para);
    parameterMap[paraConfig.name()] = para;
  };

  for (size_t i = 0; i < testConf.inputDefs.size(); i++) {
    InputDef inputDef = testConf.inputDefs[i];
    size_t paraSize = inputDef.paraSize;
    bool sparse = inputDef.sparse.sparse;
    LayerInputConfig& input = *(testConfig.mutable_inputs(i));
    input.set_input_layer_name(inputDef.name);

    if (paraSize) {
      constexpr int kParaNameLen = 20;
      char paraName[kParaNameLen];
      snprintf(paraName, kParaNameLen, "para_%d", (int)i);
      input.set_input_parameter_name(paraName);
      ParameterConfig paraConfig;
      paraConfig.set_is_sparse(sparse);
      paraConfig.set_format(inputDef.sparse.format);
      if (sparse) {
        paraConfig.add_dims((*layerMap)[input.input_layer_name()]->getSize());
        paraConfig.add_dims(testConf.layerConfig.size());
      }
      initParameter(paraName, paraSize, inputDef.isStatic, false, paraConfig);
    }
  }
  if (testConf.biasSize) {
    testConfig.set_bias_parameter_name("bias");
    ParameterConfig paraConfig;
    initParameter(testConfig.bias_parameter_name(), testConf.biasSize,
                  testConf.staticBias, true, paraConfig);
  }

  *testLayer = Layer::create(testConfig);
  (*layerMap)[testConfig.name()] = *testLayer;
  (*testLayer)->init((*layerMap), parameterMap);
  (*testLayer)->setNeedGradient(true);
}

void testPerturbParameter(TestConfig testConf, const MatrixPtr weights,
                          const LayerStatePtr state, real cost,
                          real callbackCount, real* maxDiff, LayerPtr testLayer,
                          std::vector<ParameterPtr>* parameters) {
  char fill = ' ';
  for (auto& parameter : *parameters) {
    if (parameter->isStatic()) {
      continue;
    }

    size_t dim = parameter->getSize();
    CpuVector oldPara(dim);
    CpuVector newPara(dim);
    VectorPtr v = parameter->getBuf(PARAMETER_VALUE);
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    vector<real> d(dim);

    double delta = genPerturbation(cpuGrad.getData(), &d[0], dim);
    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    if (fabs(step) < 1e-6) step = 1e-6;
    delta *= step;

    // compute newCost
    real newCost[2];
    for (int k = 0; k < 2; k++) {
      for (size_t i = 0; i < dim; ++i) {
        newp[i] = (k == 0) ? oldp[i] + step * d[i] : oldp[i] - step * d[i];
      }
      if (testConf.testBatchState) {
        testLayer->setState(state);
      }
      parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
      parameter->setValueUpdated();
      newCost[k] = getCostSum(testLayer, weights);
    }
    real diff = getDiffAndPrint(newCost[0], newCost[1], callbackCount, fill,
                                testLayer->getName(), parameter->getName(),
                                step, delta);
    *maxDiff = std::max(*maxDiff, abs(diff));
    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();
    fill = (fill == ' ') ? '.' : ' ';
  }
}

void testPerturbInput(TestConfig testConf, const MatrixPtr weights,
                      const LayerStatePtr state, real cost, real callbackCount,
                      real* maxDiff, LayerPtr testLayer,
                      std::vector<DataLayerPtr> dataLayers) {
  char fill = ' ';
  for (size_t index = 0; index < testConf.inputDefs.size(); index++) {
    InputType inputType = testConf.inputDefs[index].inputType;
    if (inputType != INPUT_DATA && inputType != INPUT_SEQUENCE_DATA &&
        inputType != INPUT_HASSUB_SEQUENCE_DATA) {
      continue;
    }

    MatrixPtr outV = dataLayers[index]->getOutputValue();
    int height = outV->getHeight();
    int width = outV->getWidth();
    size_t dim = height * width;

    CpuMatrix oldPara(height, width);
    CpuMatrix newPara(height, width);
    oldPara.copyFrom(*outV);
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuMatrix cpuGrad(height, width);
    cpuGrad.copyFrom(*(dataLayers[index]->getOutputGrad()));
    CpuMatrix d(height, width);
    real* data = d.getData();

    double delta = genPerturbation(cpuGrad.getData(), data, dim);
    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    if (fabs(step) < 1e-6) step = 1e-6;
    delta *= step;

    real newCost[2];
    for (int k = 0; k < 2; k++) {
      for (size_t i = 0; i < dim; ++i) {
        newp[i] =
            (k == 0) ? oldp[i] + step * data[i] : oldp[i] - step * data[i];
      }
      if (testConf.testBatchState) {
        testLayer->setState(state);
      }
      outV->copyFrom(newPara);
      newCost[k] = getCostSum(testLayer, weights);
    }

    real diff = getDiffAndPrint(newCost[0], newCost[1], callbackCount, fill,
                                testLayer->getName(),
                                dataLayers[index]->getName(), step, delta);
    *maxDiff = std::max(*maxDiff, abs(diff));
    // restore parameter
    outV->copyFrom(oldPara);
    fill = (fill == ' ') ? '.' : ' ';
  }
}

void testLayerGradKernel(TestConfig testConf, string testLayerName,
                         size_t batchSize, bool trans, bool useGpu,
                         bool useWeight, float epsilon) {
#ifdef PADDLE_ONLY_CPU
  if (useGpu) return;
#endif
  FLAGS_use_gpu = useGpu;
  FLAGS_prev_batch_state = testConf.testBatchState;
  MatrixPtr weights = nullptr;
  testConf.layerConfig.set_name(testLayerName);
  LOG(INFO) << " layer_type=" << testConf.layerConfig.type()
            << " useGpu=" << useGpu;

  // data layer initialize
  std::vector<DataLayerPtr> dataLayers;
  LayerMap layerMap;
  vector<Argument> datas;
  initDataLayer(testConf, &dataLayers, &datas, &layerMap, testLayerName,
                batchSize, trans, useGpu);
  // test layer initialize
  std::vector<ParameterPtr> parameters;
  LayerPtr testLayer;
  initTestLayer(testConf, &layerMap, &parameters, &testLayer);

  LayerStatePtr state = std::make_shared<LayerState>();
  if (testConf.testBatchState) {
    initBatchState(dataLayers[0], testLayer, state, useGpu);
    testLayer->resetState();
    testLayer->setState(state);
  }

  testLayer->forward(PASS_GC);
  if (useWeight && weights == nullptr) {
    weights = testLayer->getOutput().value->clone(0, 0, useGpu);
    initWeight(weights);
  }
  std::vector<Argument> outArgs;
  outArgs.push_back(testLayer->getOutput());
  if (useWeight) {
    outArgs[0].value = outArgs[0].value->clone(0, 0, useGpu);
    outArgs[0].value->dotMul(*testLayer->getOutput().value, *weights);
  }

  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << " cost " << cost;
  EXPECT_FALSE(std::isnan(cost));

  // Test whether the callback is called for a parameter
  if (testLayer->getOutputGrad()) {
    useWeight ? testLayer->getOutput().grad->copyFrom(*weights)
              : testLayer->getOutputGrad()->resetOne();
  }
  vector<int> callbackFlags(parameters.size(), 0);
  auto callback = [&](Parameter* para) { ++callbackFlags[para->getID()]; };
  testLayer->backward(callback);

  // do forward and backward for another time to test that gradient is doubled
  int callbackCount = 1;
  if (testConf.testAccumulate) {
    if (testConf.testBatchState) {
      testLayer->setState(state);
    }
    testLayer->forward(PASS_GC);
    if (testLayer->getOutputGrad()) {
      useWeight ? testLayer->getOutput().grad->copyFrom(*weights)
                : testLayer->getOutputGrad()->resetOne();
    }
    testLayer->backward(callback);
    ++callbackCount;
  }
  for (size_t i = 0; i < parameters.size(); ++i) {
    EXPECT_EQ(parameters[i]->isStatic() ? 0 : callbackCount,
              callbackFlags[i]);
  }

  // Test whether the layer's forward calculation is stable
  // by adding perturbation to its parameters or its input layers
  real maxDiff = 0;
  testPerturbParameter(testConf, weights, state, cost, callbackCount, &maxDiff,
                       testLayer, &parameters);
  testPerturbInput(testConf, weights, state, cost, callbackCount, &maxDiff,
                   testLayer, dataLayers);
  EXPECT_LE(fabs(maxDiff), epsilon);

  if (testConf.testState) {
    testState(testLayer, dataLayers, datas);
  }
  if (testConf.testBatchState) {
    testBatchState(testLayer, dataLayers, datas);
  }
}

void testLayerGrad(TestConfig testConf, string testLayerName, size_t batchSize,
                   bool trans, bool useGpu, bool useWeight, float epsilon) {
  testLayerGradKernel(testConf, testLayerName, batchSize, trans, useGpu,
                      useWeight, epsilon);
  bool isStaticTest = false;
  LayerConfig testConfig = testConf.layerConfig;
  for (size_t i = 0; i < testConf.inputDefs.size(); i++) {
    InputDef inputDef = testConf.inputDefs[i];
    // Some layer must set isStatic true, like DataNormLayer
    // so use !isStatic in if
    if (inputDef.paraSize && (!inputDef.isStatic)) {
      testConf.inputDefs[i].isStatic = true;
      isStaticTest = true;
    }
  }

  if (testConf.biasSize) {
    testConf.staticBias = true;
    isStaticTest = true;
  }
  if (isStaticTest) {
    testLayerGradKernel(testConf, testLayerName, batchSize, trans, useGpu,
                        useWeight, epsilon);
  }
}

void testProjectionGrad(ProjectionConfig conf, InputType inputType,
                        size_t parameterSize, size_t batchSize, bool useGpu,
                        bool testState) {
  TestConfig config;
  conf.set_name(conf.type());
  config.layerConfig.set_type("mixed");
  config.layerConfig.set_size(conf.output_size());
  config.biasSize = config.layerConfig.size();
  config.inputDefs.push_back(
      {inputType, "layer_0", conf.input_size(), parameterSize});
  *config.layerConfig.add_inputs()->mutable_proj_conf() = conf;
  config.testState = testState;
  testLayerGrad(config, "mixed", batchSize, false, useGpu);
}

void testOperatorGrad(TestConfig& config, OperatorConfig& operatorConf,
                      size_t batchSize, bool useGpu, bool testState) {
  config.layerConfig.set_type("mixed");

  operatorConf.set_output_size(config.layerConfig.size());
  for (size_t i = 0; i < config.inputDefs.size(); ++i) {
    operatorConf.add_input_indices(i);
    operatorConf.add_input_sizes(config.inputDefs[i].dim);
  }

  config.testState = testState;
  testLayerGrad(config, "mixed", batchSize, false, useGpu);
}
}  //  namespace paddle