api_custom_impl.h 2.2 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/api/include/tensor.h"
18
#include "paddle/phi/common/int_array.h"
19
#include "paddle/phi/common/place.h"
20
#include "paddle/phi/common/scalar.h"
21 22 23 24

namespace paddle {
namespace experimental {

25 26 27 28
// NOTE: Separate forward and backward(grad) api impl
// NOTE: The api_impl in this file are arranged in alphabetic order.

////////////////// Forward api impls //////////////////////
29

30
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking);
31

32
std::vector<Tensor> split_impl(const Tensor& x,
33
                               const IntArray& num_or_sections,
34
                               const Scalar& axis);
C
chentianyu03 已提交
35

36 37 38 39 40
////////////////// Backward(grad) api impls //////////////////////

std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad);

H
hong 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu);

55 56 57 58
std::vector<Tensor> concat_grad_impl(const std::vector<Tensor>& x,
                                     const Tensor& out_grad,
                                     const Scalar& axis);

59 60 61 62
std::vector<Tensor> stack_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad,
                                    int axis);

63 64
}  // namespace experimental
}  // namespace paddle