elementwise_kernel.h 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/phi/core/dense_tensor.h"
Y
YuanRisheng 已提交
18
#include "paddle/phi/infermeta/binary.h"
19 20 21 22

namespace phi {

template <typename T, typename Context>
Y
YuanRisheng 已提交
23 24 25 26 27
void FMaxKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis,
                DenseTensor* out);
28 29

template <typename T, typename Context>
Y
YuanRisheng 已提交
30 31 32 33 34
void FMinKernel(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y,
                int axis,
                DenseTensor* out);
35

Y
YuanRisheng 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
template <typename T, typename Context>
void AddRawKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  int axis,
                  DenseTensor* out);

template <typename T, typename Context>
void AddKernel(const Context& dev_ctx,
               const DenseTensor& x,
               const DenseTensor& y,
               DenseTensor* out);

template <typename T, typename Context>
void SubtractRawKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       int axis,
                       DenseTensor* out);

template <typename T, typename Context>
void SubtractKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    DenseTensor* out);

template <typename T, typename Context>
void DivideRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out);

template <typename T, typename Context>
void DivideKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  DenseTensor* out);

template <typename T, typename Context>
void MultiplyRawKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       int axis,
                       DenseTensor* out);

template <typename T, typename Context>
void MultiplyKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y,
                    DenseTensor* out);

88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
template <typename T, typename Context>
void MaximumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out);

template <typename T, typename Context>
void MaximumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out);

template <typename T, typename Context>
void MinimumRawKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      int axis,
                      DenseTensor* out);

template <typename T, typename Context>
void MinimumKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   DenseTensor* out);

template <typename T, typename Context>
void ModuloRawKernel(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y,
                     int axis,
                     DenseTensor* out);

template <typename T, typename Context>
void ModuloKernel(const Context& dev_ctx,
                  const DenseTensor& x,
                  const DenseTensor& y,
                  DenseTensor* out);

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
template <typename T, typename Context>
void FloorDivideRawKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          int axis,
                          DenseTensor* out);

template <typename T, typename Context>
void FloorDivideKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       DenseTensor* out);

template <typename T, typename Context>
void ElementwisePowRawKernel(const Context& dev_ctx,
                             const DenseTensor& x,
                             const DenseTensor& y,
                             int axis,
                             DenseTensor* out);

template <typename T, typename Context>
void ElementwisePowKernel(const Context& dev_ctx,
                          const DenseTensor& x,
                          const DenseTensor& y,
                          DenseTensor* out);

Y
YuanRisheng 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
template <typename T, typename Context>
DenseTensor Add(const Context& dev_ctx,
                const DenseTensor& x,
                const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  AddKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Subtract(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  SubtractKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Divide(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  DivideKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Multiply(const Context& dev_ctx,
                     const DenseTensor& x,
                     const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  MultiplyKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
template <typename T, typename Context>
DenseTensor Maximum(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  MaximumKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Minimum(const Context& dev_ctx,
                    const DenseTensor& x,
                    const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  MinimumKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor Modulo(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  ModuloKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

template <typename T, typename Context>
DenseTensor FloorDivide(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  FloorDivideKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

template <typename T, typename Context>
DenseTensor ElementwisePow(const Context& dev_ctx,
                           const DenseTensor& x,
                           const DenseTensor& y) {
  DenseTensor dense_out;
  MetaTensor meta_out(&dense_out);
  ElementwiseInferMeta(x, y, &meta_out);
  ElementwisePowKernel<T, Context>(dev_ctx, x, y, &dense_out);
  return dense_out;
}

252
}  // namespace phi