yolo_box_op.cc 7.2 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class YoloBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of YoloBoxOp should not be null.");
26 27
    PADDLE_ENFORCE(ctx->HasInput("ImgSize"),
                   "Input(ImgSize) of YoloBoxOp should not be null.");
D
dengkaipeng 已提交
28 29 30 31 32 33
    PADDLE_ENFORCE(ctx->HasOutput("Boxes"),
                   "Output(Boxes) of YoloBoxOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Scores"),
                   "Output(Scores) of YoloBoxOp should not be null.");

    auto dim_x = ctx->GetInputDim("X");
34
    auto dim_imgsize = ctx->GetInputDim("ImgSize");
D
dengkaipeng 已提交
35 36 37 38 39 40 41 42 43
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    int anchor_num = anchors.size() / 2;
    auto class_num = ctx->Attrs().Get<int>("class_num");

    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(
        dim_x[1], anchor_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
44 45 46 47 48 49
    PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
                      "Input(ImgSize) should be a 2-D tensor.");
    PADDLE_ENFORCE_EQ(
        dim_imgsize[0], dim_x[0],
        "Input(ImgSize) dim[0] and Input(X) dim[0] should be same.");
    PADDLE_ENFORCE_EQ(dim_imgsize[1], 2, "Input(ImgSize) dim[1] should be 2.");
D
dengkaipeng 已提交
50
    PADDLE_ENFORCE_GT(anchors.size(), 0,
D
dengkaipeng 已提交
51
                      "Attr(anchors) length should be greater than 0.");
D
dengkaipeng 已提交
52 53 54
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
D
dengkaipeng 已提交
55
                      "Attr(class_num) should be an integer greater than 0.");
D
dengkaipeng 已提交
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

    int box_num = dim_x[2] * dim_x[3] * anchor_num;
    std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
    ctx->SetOutputDim("Boxes", framework::make_ddim(dim_boxes));

    std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
    ctx->SetOutputDim("Scores", framework::make_ddim(dim_scores));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.GetPlace());
  }
};

class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of YoloBox operator, "
             "This is a 4-D tensor with shape of [N, C, H, W]."
D
dengkaipeng 已提交
79
             "H and W should be same, and the second dimension(C) stores"
D
dengkaipeng 已提交
80 81 82
             "box locations, confidence score and classification one-hot"
             "keys of each anchor box. Generally, X should be the output"
             "of YOLOv3 network.");
83 84 85 86 87
    AddInput("ImgSize",
             "The image size tensor of YoloBox operator, "
             "This is a 2-D tensor with shape of [N, 2]. This tensor holds"
             "height and width of each input image using for resize output"
             "box in input image scale.");
D
dengkaipeng 已提交
88 89 90
    AddOutput("Boxes",
              "The output tensor of detection boxes of YoloBox operator, "
              "This is a 3-D tensor with shape of [N, M, 4], N is the"
D
dengkaipeng 已提交
91
              "batch num, M is output box number, and the 3rd dimension"
D
dengkaipeng 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
              "stores [xmin, ymin, xmax, ymax] coordinates of boxes.");
    AddOutput("Scores",
              "The output tensor ofdetection boxes scores of YoloBox"
              "operator, This is a 3-D tensor with shape of [N, M, C],"
              "N is the batch num, M is output box number, C is the"
              "class number.");

    AddAttr<int>("class_num", "The number of classes to predict.");
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample_ratio",
                 "The downsample ratio from network input to YoloBox operator "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YoloBox operators.")
        .SetDefault(32);
    AddAttr<float>("conf_thresh",
                   "The confidence scores threshold of detection boxes."
                   "boxes with confidence scores under threshold should"
                   "be ignored.")
        .SetDefault(0.01);
    AddComment(R"DOC(
D
dengkaipeng 已提交
115
         This operator generate YOLO detection boxes from output of YOLOv3 network.
D
dengkaipeng 已提交
116 117 118 119 120
         
         The output of previous network is in shape [N, C, H, W], while H and W
         should be the same, specify the grid size, each grid point predict given
         number boxes, this given number is specified by anchors, it should be 
         half anchors length, which following will be represented as S. In the 
D
dengkaipeng 已提交
121
         second dimension(the channel dimension), C should be S * (class_num + 5),
D
dengkaipeng 已提交
122
         class_num is the box categoriy number of source dataset(such as coco), 
D
dengkaipeng 已提交
123
         so in the second dimension, stores 4 box location coordinates x, y, w, h 
D
dengkaipeng 已提交
124 125
         and confidence score of the box and class one-hot key of each anchor box.

D
dengkaipeng 已提交
126 127
         While the 4 location coordinates if :math:`tx, ty, tw, th`, the box 
         predictions correspnd to:
D
dengkaipeng 已提交
128 129 130

         $$
         b_x = \sigma(t_x) + c_x
D
dengkaipeng 已提交
131 132
         $$
         $$
D
dengkaipeng 已提交
133
         b_y = \sigma(t_y) + c_y
D
dengkaipeng 已提交
134 135
         $$
         $$
D
dengkaipeng 已提交
136
         b_w = p_w e^{t_w}
D
dengkaipeng 已提交
137 138
         $$
         $$
D
dengkaipeng 已提交
139 140 141
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
142 143
         While :math:`c_x, c_y` is the left top corner of current grid and 
         :math:`p_w, p_h` is specified by anchors.
D
dengkaipeng 已提交
144 145 146 147

         The logistic scores of the 5rd channel of each anchor prediction boxes
         represent the confidence score of each prediction scores, and the logistic
         scores of the last class_num channels of each anchor prediction boxes 
D
dengkaipeng 已提交
148 149 150
         represent the classifcation scores. Boxes with confidence scores less than
         conf_thresh should be ignored, and box final scores is the product of 
         confidence scores and classification scores.
D
dengkaipeng 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163

         )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(yolo_box, ops::YoloBoxOp, ops::YoloBoxOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(yolo_box, ops::YoloBoxKernel<float>,
                       ops::YoloBoxKernel<double>);