paddle_pass_builder.cc 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21
#ifdef PADDLE_WITH_HIP
#include <miopen/miopen.h>
#endif
22
#include <glog/logging.h>
23

24
#include <algorithm>
25
#include <sstream>
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
55
  deleted_passes_.insert(pass_type);
56 57 58 59 60 61 62 63 64 65
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

66 67 68 69 70 71
size_t PaddlePassBuilder::GetPassIndex(const std::string &pass_type) {
  auto iter = std::find(std::begin(passes_), std::end(passes_), pass_type);
  if (iter == std::end(passes_)) return -1;
  return std::distance(std::begin(passes_), iter);
}

72 73 74 75 76 77 78 79
void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
80 81
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
82 83
}

W
Wojciech Uss 已提交
84 85
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

86
const std::vector<std::string> kTRTSubgraphPasses({
87 88
  "identity_scale_op_clean_pass",              //
      "adaptive_pool2d_convert_global_pass",   //
89 90
      "shuffle_channel_detect_pass",           //
      "quant_conv2d_dequant_fuse_pass",        //
S
shentanyue 已提交
91
      "delete_fill_constant_op_pass",          //
92 93 94 95 96
      "delete_quant_dequant_op_pass",          //
      "delete_quant_dequant_filter_op_pass",   //
      "delete_weight_dequant_linear_op_pass",  //
      "delete_quant_dequant_linear_op_pass",   //
      "add_support_int8_pass",                 //
97 98
      // "fc_fuse_pass",                        //
      "simplify_with_basic_ops_pass",                 //
99
      "trt_embedding_eltwise_layernorm_fuse_pass",    //
100
      "preln_embedding_eltwise_layernorm_fuse_pass",  //
101
      "delete_c_identity_op_pass",                    //
102 103 104
      "trt_multihead_matmul_fuse_pass_v2",            //
      "trt_multihead_matmul_fuse_pass_v3",            //
      "trt_skip_layernorm_fuse_pass",                 //
105
      "preln_skip_layernorm_fuse_pass",               //
106
      "preln_residual_bias_fuse_pass",                //
107
      // "set_transformer_input_convert_pass",           //
108 109 110 111 112 113 114 115 116 117 118 119
      "conv_bn_fuse_pass",                           //
      "unsqueeze2_eltwise_fuse_pass",                //
      "trt_squeeze2_matmul_fuse_pass",               //
      "trt_reshape2_matmul_fuse_pass",               //
      "trt_flatten2_matmul_fuse_pass",               //
      "trt_map_matmul_v2_to_mul_pass",               //
      "trt_map_matmul_v2_to_matmul_pass",            //
      "trt_map_matmul_to_mul_pass",                  //
      "fc_fuse_pass",                                //
      "conv_elementwise_add_fuse_pass",              //
      "remove_padding_recover_padding_pass",         //
      "delete_remove_padding_recover_padding_pass",  //
120
      // "yolo_box_fuse_pass",      //
121 122 123 124
      "dense_fc_to_sparse_pass",                //
      "dense_multihead_matmul_to_sparse_pass",  //
      "tensorrt_subgraph_pass",                 //
      "conv_bn_fuse_pass",                      //
125 126
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
127 128 129
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
130 131
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
132 133
#endif
#endif
134 135 136
      "transpose_flatten_concat_fuse_pass",
});

D
denglin-github 已提交
137 138
const std::vector<std::string> kDlnneSubgraphPasses({
    "is_test_pass",                  //
D
denglin-github 已提交
139
    "delete_dropout_op_pass"         //
D
denglin-github 已提交
140 141 142 143 144 145 146
    "simplify_with_basic_ops_pass",  //
    "conv_bn_fuse_pass",             //
    "depthwise_conv_bn_fuse_pass",   //
    "shuffle_channel_detect_pass",   //
    "dlnne_subgraph_pass",           //
});

石晓伟 已提交
147 148 149 150 151 152
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

153 154 155 156 157 158 159 160 161 162 163 164 165
// TODO(inference): Most of the existing pass fusion operators do not
// support fp16/bf16 precision, temporarily use low precision pass to prevent
// running errors. After fusion operator supports low precision, delete this.
const std::vector<std::string> kGpuLowerPrecisionPasses{
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
};
const std::vector<std::string> kTrtLowerPrecisionPasses{
    // "conv_bn_fuse_pass",
    // "conv_eltwiseadd_bn_fuse_pass",
    "tensorrt_subgraph_pass",
};

166 167
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
168
    //   "identity_scale_op_clean_pass",             //
169 170 171 172 173 174 175 176 177 178 179
    "is_test_pass",                               //
        "simplify_with_basic_ops_pass",           //
        "conv_bn_fuse_pass",                      //
        "conv_eltwiseadd_bn_fuse_pass",           //
        "embedding_eltwise_layernorm_fuse_pass",  //
        "multihead_matmul_fuse_pass_v2",          //
        "gpu_cpu_squeeze2_matmul_fuse_pass",      //
        "gpu_cpu_reshape2_matmul_fuse_pass",      //
        "gpu_cpu_flatten2_matmul_fuse_pass",      //
        "gpu_cpu_map_matmul_v2_to_mul_pass",      //
        "gpu_cpu_map_matmul_v2_to_matmul_pass",   //
180 181
        "matmul_scale_fuse_pass",                 //
        "multihead_matmul_fuse_pass_v3",          //
182 183 184
        "gpu_cpu_map_matmul_to_mul_pass",         //
        "fc_fuse_pass",                           //
        "fc_elementwise_layernorm_fuse_pass",     //
185 186
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
187 188 189
// cudnn8.0 has memory leak problem in conv + eltwise + act, so we
// disable the pass.
#if !(CUDNN_VERSION >= 8000 && CUDNN_VERSION < 8100)
190 191
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
192 193 194 195
#endif
        "conv_elementwise_add_fuse_pass",      //
#endif                                         //
        "transpose_flatten_concat_fuse_pass",  //
196
        // following pass should be located in the last, since it will
197 198
        // work on all fused ops.
        "runtime_context_cache_pass"
199 200 201 202 203
  });

  use_gpu_ = true;
}

204 205 206 207 208 209 210
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
211 212
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
213 214
}

W
Wojciech Uss 已提交
215 216
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
217 218
}

219 220 221 222
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

B
baoachun 已提交
223 224 225 226
void GpuPassStrategy::EnableMkldnnInt8() {
  LOG(ERROR) << "GPU not support MKL-DNN int8";
}

227 228 229
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
230 231
  passes_.assign({"simplify_with_basic_ops_pass",  //
                  "layer_norm_fuse_pass",
232
                  "attention_lstm_fuse_pass",       //
233 234
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
235
                  "seqpool_cvm_concat_fuse_pass",  //
236
                  // "embedding_fc_lstm_fuse_pass", //
237
                  // TODO(wilber): fix correctness problem.
238
                  // "fc_lstm_fuse_pass",                    //
239 240 241 242
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
243 244 245
                  "gpu_cpu_squeeze2_matmul_fuse_pass",       //
                  "gpu_cpu_reshape2_matmul_fuse_pass",       //
                  "gpu_cpu_flatten2_matmul_fuse_pass",       //
H
heliqi 已提交
246
                  "matmul_v2_scale_fuse_pass",               //
247 248
                  "gpu_cpu_map_matmul_v2_to_mul_pass",       //
                  "gpu_cpu_map_matmul_v2_to_matmul_pass",    //
H
heliqi 已提交
249
                  "matmul_scale_fuse_pass",                  //
250
                  "gpu_cpu_map_matmul_to_mul_pass",          //
251 252 253 254 255 256 257 258
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
259 260
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
261
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
262

263 264
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
265

266 267
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
268 269 270 271 272 273
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

274
    for (auto &pass : std::vector<std::string>({
275 276 277
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
278 279
             "conv_affine_channel_mkldnn_fuse_pass",    //
             "conv_transpose_bn_fuse_pass",             //
280 281
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
282
             "conv_transpose_bias_mkldnn_fuse_pass",
283 284
             // TODO(baoachun): Need to support 5-dimensional input.
             // "conv3d_bias_mkldnn_fuse_pass",  //
285 286
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
287
             "conv_activation_mkldnn_fuse_pass",              //
288 289 290 291 292
             "scale_matmul_fuse_pass",                        //
             "reshape_transpose_matmul_mkldnn_fuse_pass",     //
             "reshape_transpose_matmul_v2_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",            //
             "matmul_v2_transpose_reshape_fuse_pass",         //
293
             // Disabled due to topology-dependent speed-up
H
heliqi 已提交
294 295
             //  "fc_mkldnn_pass",
             //  "fc_act_mkldnn_fuse_pass",
296
             "fc_elementwise_add_mkldnn_fuse_pass",   //
297 298
             "batch_norm_act_fuse_pass",              //
             "softplus_activation_mkldnn_fuse_pass",  //
299
             "shuffle_channel_mkldnn_detect_pass",    //
300
             "elt_act_mkldnn_fuse_pass",              //
301 302
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
303
             // "mkldnn_inplace_pass",  // This pass should be activated after
304 305
             // fuses. Disabled by default due to
             // little gain and lots of problems
306
         })) {
W
Wojciech Uss 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

327 328
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
329
  if (!use_mkldnn_bfloat16_) {
T
Tomasz Socha 已提交
330 331 332 333
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("fc_elementwise_add_mkldnn_fuse_pass");

334 335
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
336
    passes_.push_back("cpu_quantize_squash_pass");
337
  }
338 339 340 341 342 343
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

B
baoachun 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
void CpuPassStrategy::EnableMkldnnInt8() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_int8_) {
    passes_.clear();
    passes_.push_back("quant_dequant_mkldnn_pass");
    passes_.push_back("layer_norm_fuse_pass");
    passes_.push_back("attention_lstm_fuse_pass");
    passes_.push_back("seqconv_eltadd_relu_fuse_pass");
    passes_.push_back("fc_lstm_fuse_pass");
    passes_.push_back("mul_lstm_fuse_pass");
    passes_.push_back("fc_gru_fuse_pass");
    passes_.push_back("mul_gru_fuse_pass");
    passes_.push_back("multi_gru_fuse_pass");
    passes_.push_back("multi_gru_seq_fuse_pass");
    passes_.push_back("seq_concat_fc_fuse_pass");
    passes_.push_back("gpu_cpu_squeeze2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_reshape2_matmul_fuse_pass");
    passes_.push_back("gpu_cpu_flatten2_matmul_fuse_pass");
    passes_.push_back("matmul_v2_scale_fuse_pass");
    passes_.push_back("squared_mat_sub_fuse_pass");
    passes_.push_back("is_test_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_mul_pass");
    passes_.push_back("gpu_cpu_map_matmul_v2_to_matmul_pass");
    passes_.push_back("matmul_scale_fuse_pass");
    passes_.push_back("gpu_cpu_map_matmul_to_mul_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("mkldnn_placement_pass");
    passes_.push_back("depthwise_conv_mkldnn_pass");
    passes_.push_back("conv_bn_fuse_pass");
    passes_.push_back("conv_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_transpose_bn_fuse_pass");
    passes_.push_back("conv_transpose_eltwiseadd_bn_fuse_pass");
    passes_.push_back("conv_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_transpose_bias_mkldnn_fuse_pass");
    passes_.push_back("conv_elementwise_add_mkldnn_fuse_pass");
    passes_.push_back("conv_concat_relu_mkldnn_fuse_pass");
380
    passes_.push_back("conv_activation_mkldnn_fuse_pass");
B
baoachun 已提交
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
    passes_.push_back("fc_fuse_pass");
    passes_.push_back("repeated_fc_relu_fuse_pass");
    passes_.push_back("fc_mkldnn_pass");
    passes_.push_back("fc_act_mkldnn_fuse_pass");
    passes_.push_back("matmul_transpose_reshape_fuse_pass");
    passes_.push_back("matmul_v2_transpose_reshape_fuse_pass");
    passes_.push_back("batch_norm_act_fuse_pass");
    passes_.push_back("softplus_activation_mkldnn_fuse_pass");
    passes_.push_back("compute_propagate_scales_mkldnn_pass");
    passes_.push_back("scale_matmul_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_mkldnn_fuse_pass");
    passes_.push_back("reshape_transpose_matmul_v2_mkldnn_fuse_pass");
    passes_.push_back("cpu_quantize_placement_pass");
    passes_.push_back("cpu_quantize_pass");
    passes_.push_back("cpu_quantize_squash_pass");
    passes_.push_back("simplify_with_basic_ops_pass");
    passes_.push_back("mkldnn_inplace_pass");
    passes_.push_back("runtime_context_cache_pass");
  }
  use_mkldnn_int8_ = true;
#else
  use_mkldnn_int8_ = false;
#endif
}

J
jianghaicheng 已提交
406 407 408 409
IpuPassStrategy::IpuPassStrategy() : PassStrategy({}) {
  passes_.assign({"inference_process_pass"});
}

410
}  // namespace paddle