communicator.h 13.7 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include <ThreadPool.h>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <deque>
20
#include <map>
Q
Qiao Longfei 已提交
21 22
#include <memory>
#include <string>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
24
#include <unordered_set>
Q
Qiao Longfei 已提交
25
#include <utility>
Q
Qiao Longfei 已提交
26 27 28 29 30
#include <vector>

#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/operators/distributed/rpc_common.h"
Q
Qiao Longfei 已提交
31 32
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
Q
Qiao Longfei 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

namespace paddle {
namespace operators {
namespace distributed {

using Scope = framework::Scope;
using Variable = framework::Variable;

template <typename T>
class BlockingQueue {
 public:
  explicit BlockingQueue(size_t capacity) : capacity_(capacity) {
    PADDLE_ENFORCE_GT(capacity_, 0, "The capacity must be greater than 0.");
  }

  bool Push(const T& elem) {
Q
Qiao Longfei 已提交
52 53 54 55 56 57 58
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.push_back(elem);
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
59 60 61 62
    return true;
  }

  bool Push(T&& elem) {
Q
Qiao Longfei 已提交
63 64 65 66 67 68 69
    {
      std::unique_lock<std::mutex> lock(mutex_);
      cv_.wait(lock, [&] { return queue_.size() < capacity_; });
      PADDLE_ENFORCE_LT(queue_.size(), capacity_);
      queue_.emplace_back(std::move(elem));
    }
    cv_.notify_one();
Q
Qiao Longfei 已提交
70 71 72 73 74
    return true;
  }

  T Pop() {
    std::unique_lock<std::mutex> lock(mutex_);
Q
Qiao Longfei 已提交
75
    cv_.wait(lock, [=] { return !queue_.empty(); });
Q
Qiao Longfei 已提交
76 77
    T rc(std::move(queue_.front()));
    queue_.pop_front();
Q
Qiao Longfei 已提交
78
    cv_.notify_one();
Q
Qiao Longfei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    return rc;
  }

  size_t Cap() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return capacity_;
  }

  size_t Size() const {
    std::lock_guard<std::mutex> lock(mutex_);
    return queue_.size();
  }

 private:
  const size_t capacity_;
  std::deque<T> queue_;

  mutable std::mutex mutex_;
Q
Qiao Longfei 已提交
97
  std::condition_variable cv_;
Q
Qiao Longfei 已提交
98 99
};

Q
Qiao Longfei 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

inline void MergeVars(const std::string& var_name,
                      const std::vector<std::shared_ptr<Variable>>& vars,
                      Scope* scope) {
  PADDLE_ENFORCE(!vars.empty(), "should have value to merge!");
  auto cpu_place = platform::CPUPlace();
  auto& var0 = vars[0];
  auto* out_var = scope->Var(var_name);
  if (var0->IsType<framework::LoDTensor>()) {
    auto dims = var0->Get<framework::LoDTensor>().dims();
Q
Qiao Longfei 已提交
113
    VLOG(3) << "merge " << var_name << " LoDTensor dims " << dims;
Q
Qiao Longfei 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    // init output tensor
    auto* out_t = out_var->GetMutable<framework::LoDTensor>();
    out_t->mutable_data<float>(dims, cpu_place);

    // check the input dims
    for (auto& var : vars) {
      auto& var_t = var->Get<framework::LoDTensor>();
      PADDLE_ENFORCE_EQ(var_t.dims(), dims, "should have the same dims");
    }

    // set output tensor to 0.
    auto cpu_ctx = paddle::platform::CPUDeviceContext();
    math::SetConstant<paddle::platform::CPUDeviceContext, float>
        constant_functor;
    constant_functor(cpu_ctx, out_t, static_cast<float>(0));

    // sum all vars to out
    auto result = EigenVector<float>::Flatten(*out_t);
    for (auto& var : vars) {
      auto& in_t = var->Get<framework::LoDTensor>();
      auto in = EigenVector<float>::Flatten(in_t);
      result.device(*cpu_ctx.eigen_device()) = result + in;
    }
138 139
    result.device(*cpu_ctx.eigen_device()) =
        result / static_cast<float>(vars.size());
Q
Qiao Longfei 已提交
140 141 142 143 144 145 146 147 148 149 150
  } else if (var0->IsType<framework::SelectedRows>()) {
    auto& slr0 = var0->Get<framework::SelectedRows>();
    auto* out_slr = out_var->GetMutable<framework::SelectedRows>();
    out_slr->mutable_rows()->clear();
    out_slr->mutable_value()->mutable_data<float>({{}}, cpu_place);
    std::vector<const paddle::framework::SelectedRows*> inputs;
    inputs.reserve(vars.size());
    for (auto& var : vars) {
      inputs.push_back(&var->Get<framework::SelectedRows>());
    }
    auto dev_ctx = paddle::platform::CPUDeviceContext();
151 152 153
    math::scatter::MergeAverage<paddle::platform::CPUDeviceContext, float>
        merge_average;
    merge_average(dev_ctx, inputs, out_slr);
Q
Qiao Longfei 已提交
154 155 156 157 158 159 160
    VLOG(3) << "merge " << var_name << " SelectedRows height: " << slr0.height()
            << " dims: " << slr0.value().dims();
  } else {
    PADDLE_THROW("unsupported var type!");
  }
}

Q
Qiao Longfei 已提交
161 162
using RpcCtxMap = std::unordered_map<std::string, RpcContext>;

Q
Qiao Longfei 已提交
163 164
class Communicator {
 public:
T
tangwei12 已提交
165 166
  Communicator() {}
  virtual ~Communicator() {}
Q
Qiao Longfei 已提交
167

T
tangwei12 已提交
168 169 170
  virtual void Start() = 0;
  virtual void Stop() = 0;
  virtual bool IsRunning() { return running_; }
Q
Qiao Longfei 已提交
171

T
tangwei12 已提交
172 173
  virtual void Send(const std::string& var_name,
                    const framework::Scope& scope) = 0;
174 175 176 177 178

  virtual void Send(const std::vector<std::string>& sparse_var_names,
                    const std::vector<std::string>& sparse_var_tables,
                    const framework::Scope& scope) = 0;

T
tangwei12 已提交
179
  virtual void Recv() = 0;
Q
Qiao Longfei 已提交
180

T
tangwei12 已提交
181 182 183
  virtual void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                        const RpcCtxMap& recv_varname_to_ctx,
                        Scope* recv_scope) = 0;
184

T
tangwei12 已提交
185 186
  virtual void InitImpl(const paddle::framework::ProgramDesc& program,
                        Scope* recv_scope) = 0;
Q
Qiao Longfei 已提交
187

188 189 190 191 192 193 194
  // for geo-sgd
  virtual void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) = 0;

T
tangwei12 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  static Communicator* GetInstance() { return communicator_.get(); }

  static std::shared_ptr<Communicator> GetInstantcePtr() {
    return communicator_;
  }

  template <typename T>
  static Communicator* InitInstance(const RpcCtxMap& send_varname_to_ctx,
                                    const RpcCtxMap& recv_varname_to_ctx,
                                    Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithRpcCtx<T>,
                   send_varname_to_ctx, recv_varname_to_ctx, recv_scope);
    return communicator_.get();
  }

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* recv_scope) {
    std::call_once(init_flag_, &Communicator::InitWithProgram<T>, program,
                   recv_scope);
    return communicator_.get();
  }

  template <typename T>
  static Communicator* InitInstance(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    std::call_once(init_flag_, &Communicator::InitWithTranspilerInfo<T>,
                   program, training_scope, std::ref(vars_info),
                   std::ref(trainers), std::ref(geo_need_push_nums));
    return communicator_.get();
  }

T
tangwei12 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  // Init is called by InitInstance.
  template <typename T>
  static void InitWithRpcCtx(const RpcCtxMap& send_varname_to_ctx,
                             const RpcCtxMap& recv_varname_to_ctx,
                             Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(send_varname_to_ctx, recv_varname_to_ctx,
                              recv_scope);
    }
  }

  template <typename T>
  static void InitWithProgram(const paddle::framework::ProgramDesc& program,
                              Scope* recv_scope) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, recv_scope);
    }
  }

251 252 253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static void InitWithTranspilerInfo(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) {
    if (communicator_.get() == nullptr) {
      communicator_.reset(new T());
      communicator_->InitImpl(program, training_scope, std::ref(vars_info),
                              std::ref(trainers), std::ref(geo_need_push_nums));
    }
  }

T
tangwei12 已提交
264 265 266 267 268 269
 protected:
  bool running_ = false;
  static std::shared_ptr<Communicator> communicator_;
  static std::once_flag init_flag_;
};

270 271 272
using SparseIdsMap =
    std::unordered_map<std::string, std::unordered_set<int64_t>>;

T
tangwei12 已提交
273 274 275 276 277 278 279 280 281 282
class AsyncCommunicator : public Communicator {
 public:
  AsyncCommunicator() {}
  ~AsyncCommunicator();
  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;
  void Recv() override;
Q
Qiao Longfei 已提交
283
  void RecvAll();
T
tangwei12 已提交
284 285 286 287 288 289 290 291

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

Q
Qiao Longfei 已提交
292 293 294
  void SendThread();
  void RecvThread();

295 296 297 298 299 300 301 302 303 304
  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* param_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

T
tangwei12 已提交
305
 private:
Q
Qiao Longfei 已提交
306 307 308
  std::unordered_map<std::string,
                     std::shared_ptr<BlockingQueue<std::shared_ptr<Variable>>>>
      send_varname_to_queue_;
Q
Qiao Longfei 已提交
309 310
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;
311 312
  std::unique_ptr<std::thread> send_thread_{nullptr};
  std::unique_ptr<std::thread> recv_thread_{nullptr};
Q
Qiao Longfei 已提交
313 314
  Scope* recv_scope_;                  // should be global scope
  std::unique_ptr<Scope> send_scope_;  // an independent scope
Q
Qiao Longfei 已提交
315 316
  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
317
  std::atomic_uint grad_num_{0};  // the num of gradient sent since last recv
Q
Qiao Longfei 已提交
318 319
};

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
class GeoSgdCommunicator : public Communicator {
 public:
  GeoSgdCommunicator() {}
  ~GeoSgdCommunicator();
  void InitImpl(
      const paddle::framework::ProgramDesc& program, Scope* training_scope,
      std::map<std::string, std::map<std::string, std::vector<std::string>>>&
          vars_info,
      const int& trainers, const int& geo_need_push_nums) override;

  void Start() override;
  void Stop() override;

  void Send(const std::string& var_name,
            const framework::Scope& scope) override;

  void Send(const std::vector<std::string>& sparse_var_names,
            const std::vector<std::string>& sparse_var_tables,
            const framework::Scope& scope) override;

  void Recv() override;

  void InitImpl(const RpcCtxMap& send_varname_to_ctx,
                const RpcCtxMap& recv_varname_to_ctx,
                Scope* recv_scope) override;

  void InitImpl(const paddle::framework::ProgramDesc& program,
                Scope* recv_scope) override;

 private:
  void SendThread();
  void RecvAll();
  std::unordered_set<int64_t> SparseIdsMerge(
      const std::vector<SparseIdsMap>& ids_send_vec,
      const std::string& var_name);

  void SendUpdateDenseVars(const std::string& var_name);
  void SendUpdateSparseVars(const std::string& var_name,
                            const std::unordered_set<int64_t>& ids_table);
  void RecvUpdateVars(const std::string& var_name);

  void GeoSgdDenseParamInit(framework::Scope* scope_x,
                            framework::Scope* scope_y,
                            const std::string var_name);

  void GeoSgdSparseParamInit(framework::Scope* scope_x,
                             framework::Scope* scope_y,
                             const std::string var_name);

  const std::string VarToDeltaVar(const std::string var_name) {
    std::string delta_name = var_name;
    const std::string send_name = delta_name.append(".delta");
    return send_name;
  }

  const std::string DeltaVarToVar(const std::string var_name) {
    std::string origin_name = var_name;
    origin_name.erase(origin_name.find(".delta"), 6);
    const std::string param_name = origin_name;
    return param_name;
  }

 private:
  int trainer_nums_ = 1;
  int geo_need_push_nums_ = 100;
  bool is_geo_sgd_ = false;
  Scope* training_scope_;
  std::shared_ptr<Scope> delta_scope_;  // parameter local delta: recv - old
  std::shared_ptr<Scope>
      old_scope_;  // parameter local, storage the param after last recv
  std::shared_ptr<Scope> pserver_scope_;  // parameter on pserver,gloabl scope
  RpcCtxMap send_varname_to_ctx_;
  RpcCtxMap recv_varname_to_ctx_;

  std::atomic_uint have_push_{0};
  std::unordered_map<std::string, bool>
      var_list_;  // if var is sparse, using selected rows, bool=true

  std::shared_ptr<BlockingQueue<std::shared_ptr<SparseIdsMap>>>
      need_push_queue_;
  std::vector<SparseIdsMap> ids_send_vec_;

  std::unique_ptr<::ThreadPool> send_threadpool_{nullptr};
  std::unique_ptr<::ThreadPool> recv_threadpool_{nullptr};
  std::unique_ptr<std::thread> send_thread_{nullptr};
};

Q
Qiao Longfei 已提交
407 408 409
}  // namespace distributed
}  // namespace operators
}  // namespace paddle