device_context.cc 22.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14
#include <string>
Y
Yu Yang 已提交
15
#include <unordered_set>
16 17
#include <vector>

Y
Yi Wang 已提交
18
#include "paddle/fluid/memory/memory.h"
19 20
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/framework/rw_lock.h"
21
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
22
#include "paddle/fluid/platform/cuda_device_guard.h"
23
#endif
24

25 26
#include "glog/logging.h"

27 28 29 30 31
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
32
  if (size == 0) {
33 34
    return Alloc(place, size);
  }
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
56 57
    return Alloc(place, size);
#else
58 59 60
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
61
#endif
62 63 64
  } else {
    return Alloc(place, size);
  }
65 66 67 68 69
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
70 71 72
namespace paddle {
namespace platform {

73 74 75 76
#ifdef PADDLE_WITH_CUDA
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
77 78 79 80

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
81 82
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
83 84
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
85
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
86 87
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
88 89
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
90 91
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
92 93
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
94
  }
95
  return it->second.get().get();
D
dzhwinter 已提交
96 97
}

98 99 100 101 102 103 104 105 106
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
107
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
108
                   }));
C
chengduozh 已提交
109 110
}

D
dzhwinter 已提交
111 112
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
113 114 115 116 117
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
118
  std::set<Place> set;
Y
Yu Yang 已提交
119 120 121 122 123
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
124
#ifdef PADDLE_WITH_MKLDNN
125
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
126
#else
127
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
128
#endif
Y
Yu Yang 已提交
129
    } else if (platform::is_gpu_place(p)) {
D
dzhwinter 已提交
130
#ifdef PADDLE_WITH_CUDA
131
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
132
#else
G
GaoWei8 已提交
133 134 135
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
136 137 138
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
#ifdef PADDLE_WITH_CUDA
139 140
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
141
#else
G
GaoWei8 已提交
142
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
143 144
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
145 146 147 148 149 150 151 152
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
153 154 155 156 157
#endif
    }
  }
}

158 159 160 161
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
162
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
163 164 165 166 167 168 169
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
170
Place CPUDeviceContext::GetPlace() const { return place_; }
171

172 173 174
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

175
XPUDeviceContext::~XPUDeviceContext() {}
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
191 192 193

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

194
  context_ = xpu::create_context();
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
212
  }
213

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
229
  xpu_wait(context_->xpu_stream);
230 231 232 233 234 235 236
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

237
#ifdef PADDLE_WITH_CUDA
238

Q
init  
qijun 已提交
239 240 241 242 243 244 245
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

D
dzhwinter 已提交
246
  void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
247 248 249 250 251 252 253 254 255 256 257 258
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

  const cudaStream_t& stream() const override { return *stream_; }

  const cudaDeviceProp& deviceProperties() const override {
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
259 260 261
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
262 263 264
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
265
    void* retv = buf->ptr();
S
sneaxiy 已提交
266 267 268 269
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
270
    return retv;
Q
init  
qijun 已提交
271 272
  }

S
sneaxiy 已提交
273 274 275 276 277 278
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
279 280 281

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
282 283 284 285
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
286
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
287 288 289
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
290 291 292 293 294 295
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
296
#ifdef _WIN32
Q
init  
qijun 已提交
297 298
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
299 300 301
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
302
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
303
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
304 305 306 307 308 309
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
310
  CUDAPlace place_;
Q
init  
qijun 已提交
311 312
  const cudaStream_t* stream_;         // not owned;
  const cudaDeviceProp* device_prop_;  // not owned;
Q
qijun 已提交
313
  mutable void* scratch_;
Q
init  
qijun 已提交
314
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
315
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
316
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
317 318
};

319 320 321 322 323 324 325 326 327
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

328 329 330 331 332 333 334 335 336 337 338 339
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
340
                         const stream::Priority& priority) {
341 342 343 344 345 346
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
G
Guo Sheng 已提交
347
  InitCuSolverContext();
348 349 350 351 352 353
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
G
Guo Sheng 已提交
354
  DestoryCuSolverContext();
355 356
}

357
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
358
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
359 360 361
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
362
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
363
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
364

C
chengduo 已提交
365 366 367
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

368
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
369 370 371
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
372
                          << ", Driver API Version: " << driver_version_ / 1000
373
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
374 375 376
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
377 378 379
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
380
                          << (cudnn_dso_ver % 1000) / 100 << ".";
S
sneaxiy 已提交
381 382 383

  {
    // Check CUDA/CUDNN version compatiblity
384 385 386 387
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
S
sneaxiy 已提交
388 389 390 391 392 393 394 395 396 397 398 399
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
400
  default_ctx_.reset(new CUDAContext(place_));
401 402 403 404
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
405 406 407 408 409
#if defined(PADDLE_WITH_NCCL)
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
410 411
}

L
liaogang 已提交
412
Place CUDADeviceContext::GetPlace() const { return place_; }
413

414
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
415

K
Kexin Zhao 已提交
416
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
417
  return compute_capability_;
K
Kexin Zhao 已提交
418 419
}

420
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
421
  return multi_process_ * max_threads_per_mp_;
422 423
}

424 425 426 427 428 429
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

430
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
431
  return context()->EigenDevice().get();
432 433
}

434
bool CUDADeviceContext::tensor_core_available() const {
435
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
436 437
}

438 439 440 441
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

442 443 444
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
  return context()->CudnnHandle();
}
445

S
sneaxiy 已提交
446
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
447
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
448
}
449

G
Guo Sheng 已提交
450 451 452 453
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}

454 455 456
cudaStream_t CUDADeviceContext::stream() const {
  return context()->RawStream();
}
Q
qijun 已提交
457

C
chengduoZH 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
472
#endif
Q
qijun 已提交
473

T
tensor-tang 已提交
474 475
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
476
    : CPUDeviceContext(place), p_blobmap_() {
477 478
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
479 480
}

481 482
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
483 484 485 486 487 488
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
  dev_ctx->ResetBlobMap();
}

504 505 506 507 508 509 510 511 512 513
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
514 515
  cur_input_shape_str = input_shape_str;
}
516 517
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
518 519
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
520

521 522
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
523 524 525
  cur_paddle_data_layout = dl;
}

526 527
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
528 529 530
  return cur_paddle_data_layout;
}

531 532 533 534 535 536 537 538 539
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

540 541 542 543 544 545 546 547
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
563
}
564

565
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
566
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
567
  BlobMap* pMap = p_blobmap_.get();
568
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
569
  if (map_it == pMap->end()) {
570 571 572
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
573 574 575 576
  }
  return map_it->second->size();
}

577
void MKLDNNDeviceContext::SetBlob(const std::string& name,
578
                                  BlobPtr_t<void> data) const {
579
  BlobMap* pMap = p_blobmap_.get();
580 581
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
582

583
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
584

585
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
586

587 588
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
589 590 591

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
592
    sBlob = std::make_shared<ShapeBlob>();
593 594
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
595
  } else {
596
    sBlob = map_it->second;
597
  }
T
tensor-tang 已提交
598

599
  // Find KeyBlob for current input shape
600
  auto key_it = sBlob->find(tls().cur_input_shape_str);
601

602
  if (key_it == sBlob->end()) {
603 604
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
605 606
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
607
        sBlob->size() &&
608
        (sBlob->size() >=
609
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
610 611 612 613
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
614 615
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
616
  } else {
617
    pBlob = key_it->second;
618 619
  }

620 621 622 623 624 625 626
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
627
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
628
  // lock will be automatically released when out of scope
629
  return;
T
tensor-tang 已提交
630 631
}

632 633 634 635 636 637 638 639 640 641
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

642
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
643
    const std::string& name) const {
644
  BlobMap* pMap = p_blobmap_.get();
645 646
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
647

648
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
649

650
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
651

652 653
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
654
  if (map_it == pMap->end()) {
655
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
656 657 658 659 660
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
661
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
662
  if (sBlob_it == sBlob->end()) {
663
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
664 665 666 667
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
668 669 670 671

  // Find Blob via name
  auto key_it = pBlob->find(name);

672
  if (key_it == pBlob->end()) {
673
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
674 675
    return nullptr;
  }
676

677
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
678 679
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
680 681 682 683
}

#endif

Q
qijun 已提交
684
}  // namespace platform
Q
qijun 已提交
685
}  // namespace paddle