math_op_patch.py 13.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
19
from ..layers.layer_function_generator import OpProtoHolder
20
from . import no_grad
21

22 23
import numpy as np
import six
24
import warnings
25

26 27 28 29 30 31 32 33
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
# NOTE(chenweihang): We currently do not fully support the type promotion 
# between tensors. Parting support here is because the interoperation of 
# real and complex numbers in paddle quantum is very frequent, such as the 
# binary operation between `float` and `complex64`, so we must support the 
# correct type promotion on the APIs paddle quantum used.
# Now only check in dygraph (paddle quantum based dygraph)
# Full type promotion support will need to be fully verified later.
_supported_promote_complex_types_ = [
    '__add__',
    '__radd__',
    '__sub__',
    '__rsub__',
    '__mul__',
    '__rmul__',
    '__div__',
    '__truediv__',
    '__rdiv__',
    '__rtruediv__',
    '__matmul__',
]

55 56 57 58 59
_complex_dtypes = [
    core.VarDesc.VarType.COMPLEX64,
    core.VarDesc.VarType.COMPLEX128,
]

60 61
_already_patch_varbase = False

62 63 64 65 66 67 68

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

69
    @no_grad
70
    def create_tensor(value, dtype, shape):
71 72 73 74 75
        out = _varbase_creator(dtype=dtype)
        out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
                                     'value', value, 'force_cpu', False)
        out.stop_gradient = True
        return out
76 77 78 79 80 81 82

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """

83
        Cast a Tensor to a specified data type.
84 85

        Args:
86
            dtype: The target data type.
87 88

        Returns:
89
            Tensor: a new Tensor with target dtype
90 91 92 93

        Examples:
            .. code-block:: python

94
                import paddle
95 96
                import numpy as np

97 98 99 100
                original_tensor = paddle.ones([2, 2])
                print("original tensor's dtype is: {}".format(original_tensor.dtype))
                new_tensor = original_tensor.astype('float32')
                print("new tensor's dtype is: {}".format(new_tensor.dtype))
101 102

        """
103 104 105
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
106 107

    def _scalar_elementwise_op_(var, scale, bias):
108
        return core.ops.scale(var, 'scale', scale, 'bias', bias)
109

110 111 112
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
        return var.shape[0]

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

150 151 152 153
    @property
    def _ndim_(var):
        return len(var.shape)

154 155 156 157
    @property
    def _size_(var):
        return np.prod(var.shape)

158
    def _scalar_add_(var, value):
159 160
        return _scalar_elementwise_op_(var, 1.0, value)

161
    def _scalar_sub_(var, value):
162 163
        return _scalar_elementwise_op_(var, 1.0, -value)

164
    def _scalar_rsub_(var, value):
165 166
        return _scalar_elementwise_op_(var, -1.0, value)

167
    def _scalar_mul_(var, value):
168 169
        return _scalar_elementwise_op_(var, value, 0.0)

170
    def _scalar_div_(var, value):
171 172
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

173 174 175 176 177
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
178
        def __impl__(self, other_var):
179 180 181 182 183 184 185 186 187
            # 1. scalar exists cases
            # we need combine the tensor.dtype and scalar.dtype, cast correct object
            if isinstance(other_var, float):
                # in all cases(+, -, *, /, **, //, %), we need cast tensor.dtype to float
                if self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
188
                    return scalar_method(self, other_var)
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
            elif isinstance(other_var, int):
                # in all cases(+, -, *, /, **, //, %), we can cast it to float
                # because the output tensor.dtype depend on the type of input tensor
                other_var = float(other_var)
                # division is a special case
                # NOTE(chenweihang): because we cast tensor to float32 instead float64,
                # the division result can only guarantee the numerical accuracy of 6 digits 
                # after the decimal point. The result of numpy calculation is of float64 type, 
                # so the calculation result here and the calculation result of numpy are 
                # different after 6 decimal point. If necessary, we can also use float64 here.
                # torch's behavior here is consistent with ours
                if op_type == 'elementwise_div' and self.dtype in _supported_int_dtype_:
                    self = astype(self, 'float32')
                # here use `scale` replace `elementwise` to get better performance
                # but only +, -, *, / can use this method
                if scalar_method is not None:
                    return scalar_method(self, other_var)
            else:
                # do nothing
                pass
209

210
            # 2. create varbase for scalar
211
            lhs_dtype = self.dtype
212 213 214 215 216 217 218 219
            if not isinstance(other_var, core.VarBase):
                if reverse:
                    other_var = create_tensor(
                        other_var, dtype=lhs_dtype, shape=self.shape)
                else:
                    # add fill_op 
                    other_var = create_scalar(value=other_var, dtype=lhs_dtype)

220
            # 3. promote types or unify right var type to left var
221
            rhs_dtype = other_var.dtype
222
            if lhs_dtype != rhs_dtype:
223 224 225
                if method_name in _supported_promote_complex_types_ and (
                        lhs_dtype in _complex_dtypes or
                        rhs_dtype in _complex_dtypes):
226 227 228 229 230 231 232 233 234 235
                    # only when lhs_dtype or rhs_dtype is complex type,
                    # the dtype will promote, in other cases, directly
                    # use lhs_dtype, this is consistent will original rule
                    promote_dtype = core._promote_types_if_complex_exists(
                        lhs_dtype, rhs_dtype)
                    self = self if lhs_dtype == promote_dtype else astype(
                        self, promote_dtype)
                    other_var = other_var if rhs_dtype == promote_dtype else astype(
                        other_var, promote_dtype)
                else:
236 237 238
                    warnings.warn(
                        'The dtype of left and right variables are not the same, left dtype is {}, but right dtype is {}, the right dtype will convert to {}'.
                        format(lhs_dtype, rhs_dtype, lhs_dtype))
239 240
                    other_var = astype(other_var, lhs_dtype)

241 242 243 244 245
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

246
            # 4. calculation
247
            axis = -1
248
            math_op = getattr(core.ops, op_type)
L
Leo Chen 已提交
249
            return math_op(self, other_var, 'axis', axis)
250 251 252 253 254 255

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
256
            other_var(Tensor|float|int): right hand Tensor
257 258

        Returns:
259
            Tensor
260 261 262 263
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

264 265 266 267 268 269 270 271 272 273 274
    varbase_methods = [
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
275
        ('size', _size_),
276 277 278 279 280 281 282 283 284 285 286 287 288 289
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
        ##  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        ## a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
S
ShenLiang 已提交
290 291 292 293 294 295
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
296 297 298 299 300 301
        ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
                                          None)),
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
S
ShenLiang 已提交
302 303 304 305
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
306 307
        ('__matmul__', _binary_creator_('__matmul__', "matmul_v2", False,
                                        None)),
308 309 310 311 312 313 314
        ## for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
315
        ('__array_ufunc__', None)
316 317 318 319 320 321 322 323 324 325
    ]

    global _already_patch_varbase
    if not _already_patch_varbase:
        for method in varbase_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(core.VarBase, method_name, method_impl)
    else:
        import paddle.tensor
326 327 328 329 330 331 332 333 334
        # Tensor method from module paddle.tensor
        tensor_methods = paddle.tensor.linalg.__all__ + \
                         paddle.tensor.math.__all__ + \
                         paddle.tensor.logic.__all__ + \
                         paddle.tensor.manipulation.__all__ + \
                         paddle.tensor.search.__all__ + \
                         paddle.tensor.stat.__all__ + \
                         paddle.tensor.attribute.__all__
        for method_name in tensor_methods:
335 336 337 338 339
            if hasattr(core.VarBase, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(core.VarBase, method_name, method_impl)

    _already_patch_varbase = True