elementwise_grad_kernel.cc 10.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
//   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/phi/kernels/elementwise_grad_kernel.h"
16

17 18 19
#include "paddle/phi/backends/cpu/cpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
20
#include "paddle/phi/kernels/cpu/elementwise_grad.h"
21 22
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/impl/elementwise_grad_kernel_impl.h"
23

24
namespace phi {
25 26 27 28 29 30 31 32 33 34 35

template <typename T>
void AddGradFunc(const CPUContext& dev_ctx,
                 const DenseTensor& x,
                 const DenseTensor& y,
                 const DenseTensor& out,
                 const DenseTensor& dout,
                 DenseTensor* dx,
                 DenseTensor* dy,
                 int axis = -1) {
  if (dx != nullptr && dy != nullptr && (dx->dims() == dy->dims())) {
36
    ElementwiseAddGrad<T>(dev_ctx, x, y, out, dout, dx, dy);
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
  } else {
    ElemwiseExplicitGradCompute<T, IdentityGrad<T>, IdentityGrad<T>>(
        dev_ctx,
        x,
        y,
        out,
        dout,
        axis,
        dx,
        dy,
        IdentityGrad<T>(),
        IdentityGrad<T>());
  }
}

template <typename T, typename Context>
void AddGradKernel(const Context& dev_ctx,
                   const DenseTensor& x,
                   const DenseTensor& y,
                   const DenseTensor& dout,
                   int axis,
                   DenseTensor* dx,
                   DenseTensor* dy) {
60
  phi::AddGradImpl<T>(dev_ctx, x, y, dout, axis, dx, dy, AddGradFunc<T>);
61 62 63 64 65 66 67 68 69 70
}

template <typename T, typename Context>
void AddDoubleGradKernel(const Context& dev_ctx,
                         const DenseTensor& y,
                         paddle::optional<const DenseTensor&> ddx,
                         paddle::optional<const DenseTensor&> ddy,
                         const DenseTensor& dout,
                         int axis,
                         DenseTensor* ddout) {
71
  phi::AddDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
72 73 74 75 76 77 78 79 80 81
}

template <typename T, typename Context>
void AddTripleGradKernel(const Context& dev_ctx,
                         const DenseTensor& ddx,
                         const DenseTensor& ddy,
                         const DenseTensor& d_ddout,
                         int axis,
                         DenseTensor* d_ddx,
                         DenseTensor* d_ddy) {
82
  phi::AddGradImpl<T>(
83 84 85
      dev_ctx, ddx, ddy, d_ddout, axis, d_ddx, d_ddy, AddGradFunc<T>);
}

86 87 88 89 90 91 92 93 94 95
template <typename T, typename Context>
void SubtractGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  // skip out
  auto* out = &dout;
96
  ElementwiseSubGrad<T>(dev_ctx, x, y, *out, dout, dx, dy, axis);
97 98 99 100 101 102 103 104 105 106
}

template <typename T, typename Context>
void SubtractDoubleGradKernel(const Context& dev_ctx,
                              const DenseTensor& y,
                              paddle::optional<const DenseTensor&> ddx,
                              paddle::optional<const DenseTensor&> ddy,
                              const DenseTensor& dout,
                              int axis,
                              DenseTensor* ddout) {
107
  phi::SubtractDoubleGradImpl<T>(dev_ctx, y, ddx, ddy, dout, axis, ddout);
108 109
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123
template <typename T, typename Context>
void DivideGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      const DenseTensor& out,
                      const DenseTensor& dout,
                      int axis,
                      DenseTensor* dx,
                      DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, DivGradDX<T>, DivGradDY<T>>(
      dev_ctx, x, y, out, dout, axis, dx, dy, DivGradDX<T>(), DivGradDY<T>());
}

Y
YuanRisheng 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137
template <typename T, typename Context>
void MultiplyGradKernel(const Context& dev_ctx,
                        const DenseTensor& x,
                        const DenseTensor& y,
                        const DenseTensor& dout,
                        int axis,
                        DenseTensor* dx,
                        DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  auto* out = &dout;  // out is not necessary
  phi::funcs::ElemwiseGradCompute<Context, T, MulGradDX<T>, MulGradDY<T>>(
      dev_ctx, x, y, *out, dout, axis, dx, dy, MulGradDX<T>(), MulGradDY<T>());
}

138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
template <typename T, typename Context>
void MaximumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, MaxGradDx<T>, MaxGradDy<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, MaxGradDx<T>(), MaxGradDy<T>());
}

template <typename T, typename Context>
void MinimumGradKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       const DenseTensor& y,
                       const DenseTensor& dout,
                       int axis,
                       DenseTensor* dx,
                       DenseTensor* dy) {
  funcs::ElementwiseGradPreProcess(dout, dx);
  phi::funcs::ElemwiseGradCompute<Context, T, MinGradDx<T>, MinGradDy<T>>(
      dev_ctx, x, y, dout, dout, axis, dx, dy, MinGradDx<T>(), MinGradDy<T>());
}

164
}  // namespace phi
165

166
PD_REGISTER_KERNEL(add_grad,
167 168
                   CPU,
                   ALL_LAYOUT,
169
                   phi::AddGradKernel,
170 171
                   float,
                   double,
172
                   int16_t,
173 174
                   int,
                   int64_t,
175 176
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
177

178
PD_REGISTER_KERNEL(add_double_grad,
179 180
                   CPU,
                   ALL_LAYOUT,
181
                   phi::AddDoubleGradKernel,
182 183
                   float,
                   double,
184
                   int16_t,
185 186
                   int,
                   int64_t,
187 188
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
189

190
PD_REGISTER_KERNEL(add_triple_grad,
191 192
                   CPU,
                   ALL_LAYOUT,
193
                   phi::AddTripleGradKernel,
194 195
                   float,
                   double,
196
                   int16_t,
197 198
                   int,
                   int64_t,
199 200
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
201

202
PD_REGISTER_KERNEL(subtract_grad,
203 204
                   CPU,
                   ALL_LAYOUT,
205
                   phi::SubtractGradKernel,
206 207
                   float,
                   double,
208
                   int16_t,
209 210
                   int,
                   int64_t,
211
                   phi::dtype::bfloat16,
212 213
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
214

215
PD_REGISTER_KERNEL(subtract_double_grad,
216 217
                   CPU,
                   ALL_LAYOUT,
218
                   phi::SubtractDoubleGradKernel,
219 220
                   float,
                   double,
221
                   int16_t,
222 223
                   int,
                   int64_t,
224
                   phi::dtype::bfloat16,
225 226
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
227 228 229 230 231 232 233 234 235

PD_REGISTER_KERNEL(divide_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
Y
YuanRisheng 已提交
236 237
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
238 239 240 241 242 243 244 245 246

PD_REGISTER_KERNEL(divide_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::DivideDoubleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
Y
YuanRisheng 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_double_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyDoubleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}

PD_REGISTER_KERNEL(multiply_triple_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MultiplyTripleGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   bool,
                   phi::dtype::bfloat16,
                   phi::dtype::complex<float>,
                   phi::dtype::complex<double>) {}
288

Y
YuanRisheng 已提交
289
PD_REGISTER_KERNEL(fmax_grad,
290 291 292 293 294 295 296 297
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMaxGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}

Y
YuanRisheng 已提交
298
PD_REGISTER_KERNEL(fmin_grad,
299 300 301 302 303 304 305
                   CPU,
                   ALL_LAYOUT,
                   phi::ElementwiseFMinGradKernel,
                   float,
                   double,
                   int,
                   int64_t) {}
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

PD_REGISTER_KERNEL(maximum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MaximumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(minimum_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::MinimumGradKernel,
                   float,
                   double,
                   int,
                   int64_t,
                   phi::dtype::bfloat16) {}