role_maker.py 36.3 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14
"""Defination of Role Makers."""
D
dongdaxiang 已提交
15

T
tangwei12 已提交
16
from __future__ import print_function
17
from multiprocessing import Process, Manager
18
import paddle.fluid as fluid
X
xujiaqi01 已提交
19
import os
20
import time
21

T
tangwei12 已提交
22
__all__ = [
23
    'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker',
X
xujiaqi01 已提交
24
    'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker', 'GeneralRoleMaker'
T
tangwei12 已提交
25 26
]

27

T
tangwei12 已提交
28 29
class Role:
    WORKER = 1
30 31
    SERVER = 2

D
dongdaxiang 已提交
32

X
xujiaqi01 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
class MockBarrier(object):
    """
    MockBarrier is a empty impletation for barrier
    mock as a real barrier for never-barrier in a specific scenario
    """

    def barrier(self):
        """
        dummy barrier, do nothing
        """
        pass

    def barrier_all(self):
        """
        dummy all barrier, do nothing
        """
        pass

    def all_reduce(self, obj):
        """
        dummy all reduce, do nothing
        Args:
            obj(any): obj to do all reduce
        """
        return obj

    def all_gather(self, obj):
        """
        dummy all gather, do nothing
        Args:
            obj(any): obj to do all gather
        """
        return [obj]


D
dongdaxiang 已提交
68
class RoleMakerBase(object):
69 70 71 72 73 74 75
    """
    RoleMakerBase is a base class for assigning a role to current process
    in distributed training.
    A paddle developer can implement RoleMakerBase to design a role maker
    for worker or pserver assignment.
    """

D
dongdaxiang 已提交
76
    def __init__(self):
T
tangwei12 已提交
77 78
        self._worker_endpoints = []
        self._server_endpoints = []
D
dongdaxiang 已提交
79
        self._role_is_generated = False
T
tangwei12 已提交
80 81
        self._role = None
        self._current_id = -1
D
dongdaxiang 已提交
82

T
tangwei12 已提交
83
    def is_worker(self):
84 85 86
        """
        return is_worker() of current process
        """
D
dongdaxiang 已提交
87 88
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
89
    def is_server(self):
90 91 92
        """
        return is_server() of current process
        """
D
dongdaxiang 已提交
93 94
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
95
    def is_first_worker(self):
96
        """
T
tangwei12 已提交
97 98 99 100
        Check whether the node is the first instance of worker.
        Returns:
            bool: True if this is the first node of worker,
                  False if not.
101
        """
T
tangwei12 已提交
102
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
103

104 105 106 107 108 109 110 111 112
    def worker_num(self):
        """
        Get current total worker number.

        Returns:
            int: worker number
        """
        raise NotImplementedError("Please implement this method in child class")

T
tangwei12 已提交
113
    def worker_index(self):
114
        """
T
tangwei12 已提交
115 116 117 118
        Get current worker id.

        Returns:
            int: node id
119
        """
T
tangwei12 已提交
120
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
121

T
tangwei12 已提交
122
    def server_index(self):
123
        """
T
tangwei12 已提交
124 125 126 127
        Get current server id.

        Returns:
            int: node id
128
        """
T
tangwei12 已提交
129
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
130

T
tangwei12 已提交
131
    def get_trainer_endpoints(self):
132
        """
T
tangwei12 已提交
133
        return trainer endpoints
134
        """
T
tangwei12 已提交
135 136 137 138 139 140 141
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        return pserver endpoints
        """
        return self._server_endpoints
D
dongdaxiang 已提交
142

T
tangwei12 已提交
143 144 145 146 147
    def to_string(self):
        return "role: {}, current_id: {}, worker_endpoints: {}, server_endpoints: {}".format(
            self._role, self._current_id, self._worker_endpoints,
            self._server_endpoints)

X
xujiaqi01 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        print("warning: RoleMakerBase does not have all gather.")
        return None

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        print("warning: RoleMakerBase does not have all reduce worker.")

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        print("warning: RoleMakerBase does not have barrier worker.")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        print("warning: RoleMakerBase does not have barrier all.")

D
dongdaxiang 已提交
185 186

class MPIRoleMaker(RoleMakerBase):
187 188 189 190 191
    """
    MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker
    mpi4py will be used if a developer inherits MPIRoleMaker
    """

D
dongdaxiang 已提交
192
    def __init__(self):
X
xujiaqi01 已提交
193
        """Init."""
X
xujiaqi01 已提交
194
        super(MPIRoleMaker, self).__init__()
D
dongdaxiang 已提交
195 196
        from mpi4py import MPI
        self.MPI = MPI
T
tangwei12 已提交
197 198
        self._comm = MPI.COMM_WORLD
        self._node_type_comm = None
D
dongdaxiang 已提交
199
        self._ips = None
T
tangwei12 已提交
200
        self._ip = None
D
dongdaxiang 已提交
201

202
    def _get_rank(self):
X
xujiaqi01 已提交
203
        """Return rank."""
D
dongdaxiang 已提交
204 205
        self._rank = self._comm.Get_rank()
        return self._rank
D
dongdaxiang 已提交
206

207
    def _get_size(self):
X
xujiaqi01 已提交
208
        """Return size."""
D
dongdaxiang 已提交
209 210
        self._size = self._comm.Get_size()
        return self._size
D
dongdaxiang 已提交
211

212
    def _all_gather(self, obj):
213 214 215
        """
        all_gather(obj) will call MPI's allgather function
        """
X
xjqbest 已提交
216
        self._barrier_all()
D
dongdaxiang 已提交
217
        return self._comm.allgather(obj)
D
dongdaxiang 已提交
218

X
xjqbest 已提交
219 220 221 222
    def _worker_gather(self, obj):
        """
        worker_gather(obj) will call MPI's allgather function
        """
T
tangwei12 已提交
223
        if self.is_worker():
D
dongdaxiang 已提交
224 225
            self._node_type_comm.barrier()
            return self._node_type_comm.allgather(obj)
X
xjqbest 已提交
226 227
        return None

228
    def _barrier_all(self):
229 230 231
        """
        barrier_all() will call MPI's barrier_all function
        """
D
dongdaxiang 已提交
232
        self._comm.barrier()
D
dongdaxiang 已提交
233

T
tangwei12 已提交
234 235 236 237
    def _finalize(self):
        """
        finalize the current MPI instance.
        """
238
        self.MPI.Finalize()
T
tangwei12 已提交
239

240
    def _get_ips(self):
241 242 243
        """
        collect current distributed job's ip list
        """
T
tangwei12 已提交
244 245
        if not self._ips:
            self._ips = self._comm.allgather(self.get_local_ip())
D
dongdaxiang 已提交
246
        return self._ips
D
dongdaxiang 已提交
247

T
tangwei12 已提交
248
    def get_local_ip(self):
X
xujiaqi01 已提交
249
        """Return get local ip."""
T
tangwei12 已提交
250 251 252 253 254 255 256 257 258
        import socket
        self._ip = socket.gethostbyname(socket.gethostname())
        return self._ip

    def generate_role(self):
        """
        generate_role() should be called to identify current process's role
        """
        raise NotImplementedError("Please implement this method in child class")
D
dongdaxiang 已提交
259 260 261


class MPISymetricRoleMaker(MPIRoleMaker):
262 263 264 265 266 267
    """
    MPISymetricRoleMaker is designed for worker and server assignment
    under MPI. Typically, a worker and a server node will be appointed
    on each physical node. This role maker can be only used under MPI.
    """

D
dongdaxiang 已提交
268
    def __init__(self):
X
xujiaqi01 已提交
269
        """Init."""
D
dongdaxiang 已提交
270
        super(MPISymetricRoleMaker, self).__init__()
D
dongdaxiang 已提交
271 272
        self._node_type = None
        self._proc_per_node = 2
G
guru4elephant 已提交
273
        self._pserver_rand_port = 0
D
dongdaxiang 已提交
274

275
    def _check_role_generation(self):
X
xujiaqi01 已提交
276
        """Check whether role has been generated."""
D
dongdaxiang 已提交
277
        if not self._role_is_generated:
T
tangwei12 已提交
278
            raise NameError("generate_role() should be called first")
279 280
        return True

X
xujiaqi01 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            print("warning: current role is not worker in all_reduce_worker")
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()
        else:
            print("warning: current role is not worker in barrier_worker")

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        if not self._role_is_generated:
            self.generate_role()
        self._comm.barrier()

T
tangwei12 已提交
331
    def is_first_worker(self):
332 333 334 335
        """
        return whether current process is the first worker assigned by role maker
        """
        if self._check_role_generation():
T
tangwei12 已提交
336
            return self.is_worker() and 0 == self.worker_index()
337
        return False
D
dongdaxiang 已提交
338

G
guru4elephant 已提交
339
    def get_pserver_endpoints(self):
X
xujiaqi01 已提交
340 341 342 343 344 345
        """
        get pserver endpoints
        
        Returns:
            endpoints(list): pserver endpoints
        """
G
guru4elephant 已提交
346 347 348 349 350 351 352 353 354 355 356 357 358
        if self._pserver_rand_port <= 0:
            import random
            random.seed(self._server_num())
            # port will be randomly generated from 60001 to 63999
            # random seed is server num so that all nodes will get
            # the same port
            self._pserver_rand_port = random.randint(60001, 64000)
        endpoints = [
            x + ":" + str(self._pserver_rand_port)
            for x in self._server_endpoints
        ]
        return endpoints

359 360 361
    def worker_num(self):
        return self._worker_num()

T
tangwei12 已提交
362
    def is_worker(self):
363 364 365 366
        """
        return whether current process is worker assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
367
            return self._node_type == 1
368
        return False
D
dongdaxiang 已提交
369

T
tangwei12 已提交
370
    def is_server(self):
371 372 373 374
        """
        return whether current process is server assigned by role maker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
375
            return self._node_type == 0
376
        return False
D
dongdaxiang 已提交
377

378
    def _worker_num(self):
379 380 381 382
        """
        return the current number of worker
        """
        if self._check_role_generation():
383
            return self._get_size() / self._proc_per_node
384
        return 0
D
dongdaxiang 已提交
385

386
    def _server_num(self):
387 388 389 390
        """
        return the current number of server
        """
        if self._check_role_generation():
G
guru4elephant 已提交
391 392 393 394
            return self._get_size() / self._proc_per_node
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
395

T
tangwei12 已提交
396
    def worker_index(self):
397 398 399 400
        """
        return the index of worker
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
401
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
402 403 404
        else:
            self.generate_role()
            return self._get_size() / 2
D
dongdaxiang 已提交
405

T
tangwei12 已提交
406
    def server_index(self):
407 408 409 410
        """
        return the index of server
        """
        if self._check_role_generation():
D
dongdaxiang 已提交
411
            return self._rank / self._proc_per_node
G
guru4elephant 已提交
412 413 414
        else:
            self.generate_role()
            return self._get_size() / self._proc_per_node
D
dongdaxiang 已提交
415

X
xujiaqi01 已提交
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        if mode == "sum":
            mode = self.MPI.SUM
        elif mode == "max":
            mode = self.MPI.MAX
        elif mode == "min":
            mode = self.MPI.MIN
        else:
            raise ValueError("unknown mode: %s" % mode)
        self._node_type_comm.Allreduce(input, output, op=mode)

438
    def _barrier_worker(self):
439 440 441 442
        """
        barrier all workers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
443
            if self.is_worker():
D
dongdaxiang 已提交
444
                self._node_type_comm.barrier()
G
guru4elephant 已提交
445 446
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
447

448
    def _barrier_server(self):
449 450 451 452
        """
        barrier all servers in current distributed job
        """
        if self._check_role_generation():
T
tangwei12 已提交
453
            if self.is_server():
D
dongdaxiang 已提交
454
                self._node_type_comm.barrier()
G
guru4elephant 已提交
455 456
        else:
            raise Exception("You should check role generation first")
D
dongdaxiang 已提交
457

T
tangwei12 已提交
458
    def generate_role(self):
459 460 461
        """
        generate currently process's role
        """
D
dongdaxiang 已提交
462
        if not self._role_is_generated:
463
            # TODO(guru4elephant): only allow to be called once
464 465
            self._worker_endpoints = self._get_ips()[1::2]
            self._server_endpoints = self._get_ips()[::2]
466

D
dongdaxiang 已提交
467 468
            if 0 == self._get_rank() % self._proc_per_node % 2:
                self._node_type = 0
469
            else:
D
dongdaxiang 已提交
470 471 472
                self._node_type = 1
            self._node_type_comm = self._comm.Split(self._node_type)
            self._role_is_generated = True
G
guru4elephant 已提交
473 474
        else:
            raise Exception("You should check role generation first")
475 476


477
class PaddleCloudRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
478 479 480 481 482
    """
    role maker for paddle cloud,
    base class is RoleMakerBase
    """

483
    def __init__(self, is_collective=False):
484
        super(PaddleCloudRoleMaker, self).__init__()
485
        self._role_is_generated = False
486
        self._is_collective = is_collective
487 488

    def generate_role(self):
X
xujiaqi01 已提交
489
        """Generate role."""
490
        if not self._role_is_generated:
491
            if not self._is_collective:
T
tangwei12 已提交
492
                try:
C
Chengmo 已提交
493 494 495 496
                    # Environment variable PADDLE_PSERVERS_IP_PORT_LIST must be set
                    # format: string(ip:port), eg. 127.0.0.1:6001
                    eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(
                        ",")
T
tangwei12 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
                    # note that, we usually assign the same port to different ips
                    # if we run parameter server training in local mode
                    # port should be different in environment variables

                    trainers_num = int(os.environ["PADDLE_TRAINERS_NUM"])
                    training_role = os.environ["TRAINING_ROLE"]

                    if training_role not in ["TRAINER", "PSERVER"]:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")

                    if training_role == "TRAINER":
                        role = Role.WORKER
                        current_id = int(os.environ["PADDLE_TRAINER_ID"])
                    elif training_role == "PSERVER":
                        role = Role.SERVER
                        cur_ip = os.environ["POD_IP"]
C
Chengmo 已提交
514 515 516
                        curr_port = os.environ["PADDLE_PORT"]
                        curr_endpoint = ":".join([cur_ip, curr_port])
                        current_id = eplist.index(curr_endpoint)
T
tangwei12 已提交
517 518 519 520 521 522 523 524 525 526 527 528
                    else:
                        raise ValueError(
                            "TRAINING_ROLE must be PSERVER or TRAINER")
                except ValueError as ve:
                    raise ValueError(
                        "something wrong with PaddleCloud, please check environment"
                    )

                self._trainers_num = trainers_num
                self._server_endpoints = eplist
                self._role = role
                self._current_id = current_id
529
            else:
530 531 532 533 534 535
                self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
                self._training_role = os.getenv("PADDLE_TRAINING_ROLE",
                                                "TRAINER")
                assert (self._training_role == "TRAINER")
                self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS")
                self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT")
536 537 538 539
                assert self._worker_endpoints is not None, "can't find PADDLE_TRAINER_ENDPOINTS"
                self._worker_endpoints = self._worker_endpoints.split(",")
                self._trainers_num = len(self._worker_endpoints)

540 541
            self._role_is_generated = True

542 543 544 545 546
    def get_pserver_endpoints(self):
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

547 548 549
    def is_worker(self):
        if not self._role_is_generated:
            self.generate_role()
550 551 552
        return self._role == Role.WORKER

    def is_server(self):
553 554
        if not self._role_is_generated:
            self.generate_role()
555 556 557
        return self._role == Role.SERVER

    def is_first_worker(self):
558 559
        if not self._role_is_generated:
            self.generate_role()
560 561 562
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
563 564
        if not self._role_is_generated:
            self.generate_role()
565 566 567
        return self._current_id

    def server_index(self):
568 569
        if not self._role_is_generated:
            self.generate_role()
570 571 572
        return self._current_id

    def worker_num(self):
573 574
        if not self._role_is_generated:
            self.generate_role()
575
        return self._trainers_num
576 577


X
xujiaqi01 已提交
578 579 580
class GeneralRoleMaker(RoleMakerBase):
    """
    This role maker is for general use, you can set os.environ to customize:
T
tianshuo78520a 已提交
581 582
        PADDLE_PSERVERS_IP_PORT_LIST : all pservers' ip:port, separated by ','
        PADDLE_TRAINER_ENDPOINTS     : all trainers' ip:port, separated by ','
X
xujiaqi01 已提交
583 584 585 586 587 588 589 590 591 592 593 594
        TRAINING_ROLE                : TRAINER or PSERVER
        PADDLE_TRAINER_ID            : current trainer id (only for trainer),
                                       it is index in PADDLE_TRAINER_ENDPOINTS
        PADDLE_PSERVER_ID            : current pserver id (only for pserver)
                                       it is index in PADDLE_PSERVERS_IP_PORT_LIST
    """

    def __init__(self, **kwargs):
        super(RoleMakerBase, self).__init__()
        self._role_is_generated = False
        self._hdfs_name = kwargs.get("hdfs_name", "")
        self._hdfs_ugi = kwargs.get("hdfs_ugi", "")
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        self._hdfs_path = kwargs.get("path", "").rstrip("/")
        self._init_timeout_seconds = kwargs.get("init_timeout_seconds", 3600)
        self._run_timeout_seconds = kwargs.get("run_timeout_seconds", 9999999)
        ip_port = kwargs.get("http_ip_port", "")
        self._http_ip_port = []
        self._http_server = None
        # if ip_port is not empty, it will use http instead of hdfs
        if ip_port != "":
            self._http_ip_port = ip_port.split(":")
            # it's for communication between processes
            self._manager = Manager()
            # global dict to store status
            self._http_server_d = self._manager.dict()
            # set running status of http server
            self._http_server_d["running"] = False
X
xujiaqi01 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
        self._iface = self.__get_default_iface()
        # this environment variable can be empty
        self._prefix = os.getenv("SYS_JOB_ID", "")

    def generate_role(self):
        """
        generate role for general role maker
        """
        if not self._role_is_generated:
            eplist = os.environ["PADDLE_PSERVERS_IP_PORT_LIST"].split(",")
            training_role = os.environ["TRAINING_ROLE"]
            worker_endpoints = os.environ["PADDLE_TRAINER_ENDPOINTS"].split(",")
            trainers_num = len(worker_endpoints)
            if training_role not in ["TRAINER", "PSERVER"]:
                raise ValueError("TRAINING_ROLE must be PSERVER or TRAINER")
X
xujiaqi01 已提交
625 626 627 628
            self._is_barrier_all = 1
            if "PADDLE_IS_BARRIER_ALL_ROLE" in os.environ:
                self._is_barrier_all = int(os.environ[
                    "PADDLE_IS_BARRIER_ALL_ROLE"])
X
xujiaqi01 已提交
629 630 631
            if training_role == "TRAINER":
                role = Role.WORKER
                current_id = int(os.environ["PADDLE_TRAINER_ID"])
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
                if current_id == 0 and len(self._http_ip_port) != 0:
                    size_d = {
                        "trainer": len(worker_endpoints),
                        "pserver": len(eplist),
                        "all": len(worker_endpoints) + len(eplist)
                    }
                    # child process for http server
                    self._http_server = Process(
                        target=self.__start_kv_server,
                        args=(self._http_server_d, size_d))
                    self._http_server.daemon = True
                    # set running status to True
                    self._http_server_d["running"] = True
                    # start child process
                    self._http_server.start()
X
xujiaqi01 已提交
647 648
                self._node_type = 1
                self._cur_endpoint = worker_endpoints[current_id]
X
xujiaqi01 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
                if self._is_barrier_all:
                    gloo = fluid.core.Gloo()
                    gloo.set_rank(current_id)
                    gloo.set_size(len(worker_endpoints))
                    gloo.set_prefix(self._prefix)
                    gloo.set_iface(self._iface)
                    gloo.set_timeout_seconds(self._init_timeout_seconds,
                                             self._run_timeout_seconds)
                    if len(self._http_ip_port) != 0:
                        gloo.set_http_store(self._http_ip_port[0],
                                            int(self._http_ip_port[1]),
                                            "trainer")
                    else:
                        gloo.set_hdfs_store(self._hdfs_path + "/trainer",
                                            self._hdfs_name, self._hdfs_ugi)
                    gloo.init()
                    self._node_type_comm = gloo
666
                else:
X
xujiaqi01 已提交
667
                    self._all_comm = MockBarrier()
X
xujiaqi01 已提交
668 669 670 671 672 673 674 675 676 677 678 679 680
            elif training_role == "PSERVER":
                role = Role.SERVER
                if os.environ.get("PADDLE_PSERVER_ID") is not None:
                    current_id = int(os.environ["PADDLE_PSERVER_ID"])
                    cur_endpoint = eplist[current_id]
                else:
                    # this is for compatible with paddlecloud
                    cur_ip = os.environ["POD_IP"]
                    cur_port = os.environ["PADDLE_PORT"]
                    cur_endpoint = ":".join([cur_ip, cur_port])
                    current_id = eplist.index(cur_endpoint)
                self._node_type = 0
                self._cur_endpoint = cur_endpoint
681
                gloo = fluid.core.Gloo()
682 683 684 685 686 687 688 689 690 691 692 693 694
                gloo.set_rank(current_id)
                gloo.set_size(len(eplist))
                gloo.set_prefix(self._prefix)
                gloo.set_iface(self._iface)
                gloo.set_timeout_seconds(self._init_timeout_seconds,
                                         self._run_timeout_seconds)
                if len(self._http_ip_port) != 0:
                    gloo.set_http_store(self._http_ip_port[0],
                                        int(self._http_ip_port[1]), "pserver")
                else:
                    gloo.set_hdfs_store(self._hdfs_path + "/pserver",
                                        self._hdfs_name, self._hdfs_ugi)
                gloo.init()
X
xujiaqi01 已提交
695 696
                self._node_type_comm = gloo

697
            gloo = fluid.core.Gloo()
X
xujiaqi01 已提交
698
            all_list = worker_endpoints + eplist
699 700 701 702 703 704 705 706 707 708 709 710 711
            gloo.set_rank(all_list.index(self._cur_endpoint))
            gloo.set_size(len(all_list))
            gloo.set_prefix(self._prefix)
            gloo.set_iface(self._iface)
            gloo.set_timeout_seconds(self._init_timeout_seconds,
                                     self._run_timeout_seconds)
            if len(self._http_ip_port) != 0:
                gloo.set_http_store(self._http_ip_port[0],
                                    int(self._http_ip_port[1]), "all")
            else:
                gloo.set_hdfs_store(self._hdfs_path + "/all", self._hdfs_name,
                                    self._hdfs_ugi)
            gloo.init()
X
xujiaqi01 已提交
712 713 714 715 716 717 718 719
            self._all_comm = gloo
            self._trainers_num = trainers_num
            self._server_endpoints = eplist
            self._role = role
            self._current_id = current_id
            self._rank = all_list.index(self._cur_endpoint)
            self._size = len(all_list)
            self._worker_endpoints = worker_endpoints
720 721 722 723 724
            if self._http_server is not None:
                # set running status to False
                self._http_server_d["running"] = False
                # wait until child process exits
                self._http_server.join()
X
xujiaqi01 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
            self._role_is_generated = True

    def all_gather(self, input):
        """
        all gather between trainers and pservers

        Args:
            input(int|float): input value

        Returns:
            return a list of values
        """
        return self._all_gather(input)

    def all_reduce_worker(self, input, output, mode="sum"):
        """
        all reduce between trainers if current role is TRAINER,
        only support array of one dim.

        Args:
            input(list/numpy.array): array of one dim
            output(list/numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self.is_worker():
            return
        self._all_reduce(input, output, mode)

    def barrier_worker(self):
        """
        barrier between trainers if current role is TRAINER
        """
        self._barrier_worker()

    def barrier_all(self):
        """
        barrier between trainers if current role is PSERVER
        """
        self._barrier_all()

    def get_local_endpoint(self):
        """
        get local endpoint of current process
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._cur_endpoint

    def get_trainer_endpoints(self):
        """
        get endpoint of all trainers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_endpoints

    def get_pserver_endpoints(self):
        """
        get endpoint of all pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_endpoints

    def is_worker(self):
        """
        whether current process is worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER

    def is_server(self):
        """
        whether current process is server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.SERVER

    def is_first_worker(self):
        """
        whether current process is worker of rank 0
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._role == Role.WORKER and self._current_id == 0

    def worker_index(self):
        """
        get index of current worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def server_index(self):
        """
        get index of current server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._current_id

    def worker_num(self):
        """
        retrun the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._worker_num()

    def server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._server_num()

    def _barrier_worker(self):
        """
        barrier all workers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_worker():
            self._node_type_comm.barrier()

    def _barrier_all(self):
        """
        barrier all workers and servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        self._all_comm.barrier()

    def _barrier_server(self):
        """
        barrier all servers in current distributed job
        """
        if not self._role_is_generated:
            self.generate_role()
        if self.is_server():
            self._node_type_comm.barrier()

    def _worker_num(self):
        """
        return the current number of worker
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._trainers_num

    def _server_num(self):
        """
        return the current number of server
        """
        if not self._role_is_generated:
            self.generate_role()
        return len(self._server_endpoints)

    def _finalize(self):
        """Default do nothing."""
        pass

    def _all_reduce(self, input, output, mode="sum"):
        """
        all reduce between all workers

        Args:
            input(list|numpy.array): array of one dim
            output(list|numpy.array): array of one dim
            mode(str): "sum" or "min" or "max"
        """
        if not self._role_is_generated:
            self.generate_role()
        input_list = [i for i in input]
        ans = self._node_type_comm.all_reduce(input_list, mode)
        for i in range(len(ans)):
            output[i] = ans[i]

    def _all_gather(self, obj):
        """
        gather between all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        self._barrier_all()
        return self._all_comm.all_gather(obj)

    def _worker_gather(self, obj):
        """
        gather between all workers
        """
        if not self._role_is_generated:
            self.generate_role()
        if not self.is_worker():
            return None
        self._barrier_worker()
        return self._node_type_comm.all_gather(obj)

    def _get_rank(self):
        """
        get current rank in all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._rank

    def _get_size(self):
        """
        get total num of all workers and pservers
        """
        if not self._role_is_generated:
            self.generate_role()
        return self._size

    def __get_default_iface(self):
        """
        get default physical interface
        """
        default1 = self.__get_default_iface_from_gateway()
        default2 = self.__get_default_iface_from_interfaces()
        return default2 if default1 == "lo" else default1

    def __get_default_iface_from_gateway(self):
        """
        get default physical interface
        """
        import netifaces
        gateways = netifaces.gateways()
        if gateways.get(netifaces.AF_INET) != None:
            gateway = gateways[netifaces.AF_INET]
            if len(gateway) > 0 and len(gateway[0]) > 1:
                return gateway[0][1]
        return "lo"

    def __get_default_iface_from_interfaces(self):
        """
        get default physical interface
        """
        import netifaces
        for intf_name in netifaces.interfaces():
            addresses = netifaces.ifaddresses(intf_name)
            if netifaces.AF_INET in addresses:
                ipv4_addresses = addresses[netifaces.AF_INET]
                for ipv4_address in ipv4_addresses:
                    if 'broadcast' in ipv4_address:
                        return intf_name
        return "lo"

977 978 979 980 981 982 983 984 985 986
    def __start_kv_server(self, http_server_d, size_d):
        from paddle.fluid.incubate.fleet.utils.http_server import KVServer
        http_server = KVServer(int(self._http_ip_port[1]), size_d)
        http_server.start()
        wait_seconds = 5
        while http_server_d.get("running",
                                False) and not http_server.shoud_stop():
            time.sleep(wait_seconds)
        http_server.stop()

X
xujiaqi01 已提交
987

988
class UserDefinedRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
989 990 991 992 993 994
    """
    UserDefinedRoleMaker is designed for worker and server assignment
    under manual. Typically, a worker and a server node will be appointed
    on each physical node, It can be assign by user.
    """

995 996
    def __init__(self,
                 current_id=0,
T
tangwei12 已提交
997 998 999
                 role=Role.WORKER,
                 worker_num=0,
                 server_endpoints=None):
1000 1001
        super(UserDefinedRoleMaker, self).__init__()

1002 1003 1004 1005 1006 1007 1008
        if not isinstance(server_endpoints, list):
            raise TypeError("server_endpoints must be as string list")
        elif len(server_endpoints) <= 0:
            raise ValueError(
                "the length of server_endpoints list must be greater than 0")
        elif len(server_endpoints) != len(set(server_endpoints)):
            raise ValueError("server_endpoints can't have duplicate elements")
1009
        else:
1010 1011 1012 1013 1014 1015
            for server_endpoint in server_endpoints:
                if not isinstance(server_endpoint, str):
                    raise TypeError(
                        "every element in server_endpoints list must be as string"
                    )
            self._server_endpoints = server_endpoints
1016

T
tangwei12 已提交
1017
        if role != Role.WORKER and role != Role.SERVER:
1018 1019 1020 1021
            raise TypeError("role must be as Role")
        else:
            self._role = role

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif self._role == Role.SERVER and current_id >= len(
                    server_endpoints):
                raise ValueError(
                    "if role is Role.SERVER, current_id must be less than or equal to len(server_endpoints) - 1"
                )
            self._current_id = current_id

1035 1036 1037
        if not isinstance(worker_num, int):
            raise TypeError("worker_num must be as int")
        else:
1038 1039
            if worker_num <= 0:
                raise ValueError("worker_num must be greater than 0")
1040 1041
            self._worker_num = worker_num

1042 1043 1044
    def generate_role(self):
        self._role_is_generated = True

T
tangwei12 已提交
1045 1046 1047 1048 1049
    def is_worker(self):
        return self._role == Role.WORKER

    def is_server(self):
        return self._role == Role.SERVER
1050

T
tangwei12 已提交
1051 1052
    def is_first_worker(self):
        return self._role == Role.WORKER and self._current_id == 0
1053

T
tangwei12 已提交
1054 1055
    def worker_index(self):
        return self._current_id
1056

T
tangwei12 已提交
1057 1058
    def server_index(self):
        return self._current_id
1059 1060 1061

    def worker_num(self):
        return self._worker_num
1062 1063 1064


class UserDefinedCollectiveRoleMaker(RoleMakerBase):
X
xujiaqi01 已提交
1065 1066 1067 1068 1069
    """
    UserDefinedCollectiveRoleMaker is designed for worker assignment
    under manual for collective mode.
    """

1070 1071 1072
    def __init__(self, current_id=0, worker_endpoints=None):
        super(UserDefinedCollectiveRoleMaker, self).__init__()

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
        if not isinstance(worker_endpoints, list):
            raise TypeError("worker_endpoints must be as string list")
        elif len(worker_endpoints) <= 0:
            raise ValueError(
                "the length of worker_endpoints list must be greater than 0")
        elif len(worker_endpoints) != len(set(worker_endpoints)):
            raise ValueError("worker_endpoints can't have duplicate elements")
        else:
            for worker_endpoint in worker_endpoints:
                if not isinstance(worker_endpoint, str):
                    raise TypeError(
                        "every element in worker_endpoints list must be as string"
                    )
            self._worker_endpoints = worker_endpoints

1088 1089 1090 1091
        if not isinstance(current_id, int):
            raise TypeError("current_id must be as int")
        else:
            if current_id < 0:
1092 1093 1094 1095 1096 1097
                raise ValueError(
                    "current_id must be greater than or equal to 0")
            elif current_id >= len(worker_endpoints):
                raise ValueError(
                    "current_id must be less than or equal to len(worker_endpoints) - 1"
                )
1098 1099 1100 1101
            self._current_id = current_id

        self._worker_num = len(self._worker_endpoints)

1102 1103 1104
    def generate_role(self):
        self._role_is_generated = True

1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
    def is_worker(self):
        return True

    def is_first_worker(self):
        return self._current_id == 0

    def worker_index(self):
        return self._current_id

    def worker_num(self):
        return self._worker_num