cpu_quantize_pass.cc 41.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"
W
wanghuancoder 已提交
16

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

21
#include "paddle/fluid/platform/mkldnn_helper.h"
22 23 24 25 26 27
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

28
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
29 30
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
31 32
using string::PrettyLogDetail;

33 34 35 36 37 38 39 40 41
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

42
void MarkAndLogCannotQuantizeOp(Node* op, const char* details = nullptr) {
43 44 45
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
46
  if (details) msg_ss << " " << details;
47 48
  VLOG(2) << msg_ss.str().c_str();
  op->Op()->SetAttr("mkldnn_data_type", std::string("float32"));
49 50
}

51 52 53 54 55 56
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
57 58
}

59
void LogQuantizationDisabled(Node* op) {
60
  VLOG(2) << "Quantization skipped for operator " << op->Name()
61
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
62
          << "). Attribute mkldnn_data_type != \"int8\".";
63 64
}

65 66 67 68 69 70 71 72
void LogQuantizedOpsCounter(const std::string& type, const int counter,
                            const char* details = nullptr) {
  std::stringstream msg_ss;
  msg_ss << "---    quantized " << counter << " " << type << " ops";
  if (details) msg_ss << " " << details;
  PrettyLogDetail(msg_ss.str().c_str());
}

73 74 75 76 77 78
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

void CPUQuantizePass::QuantizeInput(Graph* g, Node* op, Node* input,
                                    std::string input_name, double scale_to_one,
79 80 81
                                    bool is_input_unsigned,
                                    std::string scale_attr_name, float shift,
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
82 83 84
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
85 86 87 88
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
                        input_name, op->Op()->Type()));
89
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
90 91 92 93 94 95 96 97 98 99 100 101 102
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
103 104
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
105

Z
Zuza 已提交
106 107 108 109 110 111 112 113 114 115 116
  // fix to fc format error
  if (op->Op()->Type() == "fc" &&
      op->Op()->GetAttrIfExists<int>("in_num_col_dims") == 2) {
    q_desc.SetAttr("output_format", Has("data_layout")
                                        ? Get<std::string>("data_layout")
                                        : "NCHW");
  } else {
    q_desc.SetAttr("output_format", Has("data_layout")
                                        ? Get<std::string>("data_layout")
                                        : "NHWC");
  }
117 118 119 120 121 122 123 124 125 126 127 128 129
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
130
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
131 132
}

133
void CPUQuantizePass::QuantizeInputs(Graph* g, Node* op, std::string input_name,
134 135 136
                                     bool are_inputs_unsigned,
                                     std::string scale_attr_name, float shift,
                                     std::string shift_attr_name) const {
137
  auto inputs = op->inputs;
138
  auto output = op->outputs[0];
139 140 141 142 143 144 145 146
  PADDLE_ENFORCE_GE(inputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
                        op->Name(), inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(), 1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal to 1.", op->Name(),
                        op->outputs.size()));
147 148 149 150 151 152 153 154

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

155
  double scale_out = GetScaleValueForNode(output);
156
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
157
  float scale = scale_out * max;
158 159 160 161 162 163 164 165

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
166
    q_desc.SetAttr("Shift", shift);
167 168 169
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
170
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
171 172 173 174 175 176 177 178 179 180 181 182 183
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
184
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
185 186
}

187 188 189 190
void CPUQuantizePass::DequantizeOutput(Graph* g, Node* op, Node* output,
                                       std::string output_name,
                                       double scale_to_one, bool is_unsigned,
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
191 192 193 194 195
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
  PADDLE_ENFORCE_EQ(name_found, true,
                    platform::errors::InvalidArgument(
196 197
                        "Var(%s) isn't the output of the %s operator.",
                        output_name, op->Op()->Type()));
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

227 228 229 230 231 232 233 234 235 236 237 238 239
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto name : names) {
    if (scales.find(name) == scales.end()) {
      present = false;
      LogScaleIsMissingForVarName(name);
    }
  }
  return present;
}

240
bool CPUQuantizePass::AreScalesPresentForNodes(
241
    std::initializer_list<Node*> nodes) const {
242 243 244 245 246
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  bool present = true;
  for (auto node : nodes) {
    if (scales.count(node->Name()) == 0) {
      present = false;
247
      LogScaleIsMissingForVarNode(node);
248 249 250 251 252
    }
  }
  return present;
}

253 254 255 256 257 258
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataByName(
    const std::string& name) const {
  auto& scales = Get<VarQuantScale>("quant_var_scales");
  return scales.at(name);
}

259 260
std::pair<bool, LoDTensor> CPUQuantizePass::GetScaleDataForNode(
    const Node* node) const {
261 262 263 264 265
  return GetScaleDataByName(node->Name());
}

LoDTensor CPUQuantizePass::GetScaleTensorByName(const std::string& name) const {
  return GetScaleDataByName(name).second;
266 267 268 269 270 271 272 273 274 275 276 277 278
}

LoDTensor CPUQuantizePass::GetScaleTensorForNode(const Node* node) const {
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

279 280
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
281
         platform::HasOpINT8DataType(node->Op());
282 283 284
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
285 286 287 288 289 290
  // return true only if all of outputs are ops and their are either quantize or
  // have int8 data type
  return all_of(node->outputs.begin(), node->outputs.end(), [](Node* output) {
    return (output->IsOp() && (output->Op()->Type() == "quantize" ||
                               platform::HasOpINT8DataType(output->Op())));
  });
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
307
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
308 309 310
      LogQuantizationDisabled(conv_op);
      return;
    }
311 312 313 314 315

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

316
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
317
    if (with_residual_data && !has_output_scale) {
318 319 320 321
      MarkAndLogCannotQuantizeOp(
          conv_op,
          "Conv op with ResidualData input cannot be quantized "
          "without output scale.");
W
Wojciech Uss 已提交
322 323 324
      return;
    }

325 326 327
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(conv_residual_data, conv_residual_data,
                                conv_pattern);
328
      if (!AreScalesPresentForNodes(
329
              {conv_input, conv_filter, conv_residual_data})) {
330 331
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
332
        return;
333
      }
334 335 336 337 338 339 340 341

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

      QuantizeInput(g, conv_op, conv_residual_data, "ResidualData",
                    residual_scale, is_residual_unsigned, "Scale_in_eltwise");
    } else {
342
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
343 344
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
345
        return;
346
      }
347 348
    }

349 350
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
351 352 353
    QuantizeInput(g, conv_op, conv_input, "Input", input_scale,
                  is_input_unsigned, "Scale_in");

354
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
355
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
356
                                     filter_scale_tensor.numel()};
357 358 359 360 361 362 363
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

364
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
365
    if (has_output_scale) {
366 367 368 369 370 371 372 373
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
      DequantizeOutput(g, conv_op, conv_output, "Output", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
374

375
    // change threshold in bounded ReLu
376 377
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
378 379 380 381
      float scale_out =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
      float threshold =
          BOOST_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
382
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
383 384
    }

385 386 387 388 389 390
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

391 392 393
  LogQuantizedOpsCounter(
      "conv2d", quantize_conv_count,
      ((with_residual_data) ? "with residual connection" : ""));
394 395
}

M
Michał Gallus 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
void CPUQuantizePass::QuantizeFc(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
  auto* fc_input = gpd.mutable_pattern()
                       ->NewNode("fc_quantizer/input")
                       ->AsInput()
                       ->assert_is_op_input("fc", "Input");
  fc_pattern(fc_input, false);

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fc op";
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
413
    if (!platform::HasOpINT8DataType(fc->Op())) {
414 415 416
      LogQuantizationDisabled(fc);
      return;
    }
417
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
418
      MarkAndLogCannotQuantizeOp(fc, "use_mkldnn attribute set to false");
M
Michał Gallus 已提交
419
      return;
420
    }
M
Michał Gallus 已提交
421 422 423 424 425

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

426
    if (!AreScalesPresentForNodes({input, weights})) {
427
      MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
428 429
      return;
    }
430

431 432
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
M
Michał Gallus 已提交
433 434 435
    QuantizeInput(g, fc, input, "Input", input_scale, is_input_unsigned,
                  "Scale_in");

436
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
437
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
438
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
439 440 441 442 443 444 445
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

446
    // if quantization scale is missing for output tensor, return fp32 data
447
    if (AreScalesPresentForNodes({output})) {
448 449 450 451 452 453 454
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
      DequantizeOutput(g, fc, output, "Out", output_scale, is_output_unsigned,
                       "Scale_out");
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
455 456 457 458 459 460

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);
461
  LogQuantizedOpsCounter("fc", quantize_fc_count);
M
Michał Gallus 已提交
462 463
}

464 465 466 467 468 469 470 471 472 473 474 475 476
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
477
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
478 479 480
      LogQuantizationDisabled(pool_op);
      return;
    }
481 482 483 484

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

485
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
486 487
      MarkAndLogCannotQuantizeOp(pool_op,
                                 "No scale available for the operator");
488 489
      return;
    }
490

491 492
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
493 494
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

495 496
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
497 498 499 500 501 502 503 504
    DequantizeOutput(g, pool_op, pool_output, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);
505
  LogQuantizedOpsCounter("pool2d", quantize_pool_count);
506 507
}

508 509 510 511 512 513 514 515 516 517 518 519 520
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
521
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
522 523 524
      LogQuantizationDisabled(concat_op);
      return;
    }
525 526 527

    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

528
    if (!AreScalesPresentForNodes({concat_out})) {
529 530
      MarkAndLogCannotQuantizeOp(concat_op,
                                 "No scale available for the operator");
531 532
      return;
    }
533

534 535
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
536 537 538
    bool are_all_inputs_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(concat_out, &are_all_inputs_unsigned);
539

540
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
541 542 543 544 545 546 547 548 549

    DequantizeOutput(g, concat_op, concat_out, "Out", output_scale,
                     are_all_inputs_unsigned);

    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);
550
  LogQuantizedOpsCounter("concat", quantize_concat_count);
551 552
}

553 554 555 556 557 558 559 560 561 562 563 564 565
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
566
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
567 568 569
      LogQuantizationDisabled(prior_box_op);
      return;
    }
570 571 572 573

    GET_IR_NODE_FROM_SUBGRAPH(prior_box_input, prior_box_input,
                              prior_box_pattern);

574
    if (!AreScalesPresentForNodes({prior_box_input})) {
575 576
      MarkAndLogCannotQuantizeOp(prior_box_op,
                                 "No scale available for the operator");
577 578
      return;
    }
579

580 581 582
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
583 584 585 586 587 588 589 590
    QuantizeInput(g, prior_box_op, prior_box_input, "Input", input_scale,
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);
591
  LogQuantizedOpsCounter("prior_box", quantize_prior_box_count);
592 593
}

594 595 596 597 598 599 600 601 602 603 604 605 606
void CPUQuantizePass::QuantizeTranspose(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Transpose transpose_pattern{pattern, name_scope_};
  transpose_pattern();

  int quantize_transpose_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize transpose op";
    GET_IR_NODE_FROM_SUBGRAPH(transpose_op, transpose_op, transpose_pattern);

    // skip if should not be quantized
607
    if (!platform::HasOpINT8DataType(transpose_op->Op())) {
608
      LogQuantizationDisabled(transpose_op);
609 610 611
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, transpose_pattern);
612 613
    GET_IR_NODE_FROM_SUBGRAPH(transpose_in, transpose_in, transpose_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(transpose_out, transpose_out, transpose_pattern);
614

615
    // skip if prev op and next op is not quantized
616
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(transpose_out))) {
617 618
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No other quantizable operators nearby");
619 620 621
      return;
    }

622
    if (!AreScalesPresentForNodes({transpose_in, transpose_out})) {
623 624
      MarkAndLogCannotQuantizeOp(transpose_op,
                                 "No scale available for the operator");
625
      return;
626
    }
627

628 629
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(transpose_in, &is_input_unsigned);
630 631 632
    QuantizeInput(g, transpose_op, transpose_in, "X", input_scale,
                  is_input_unsigned);

633 634 635
    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(transpose_out, &is_output_unsigned);
636 637 638 639 640 641 642 643
    DequantizeOutput(g, transpose_op, transpose_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_transpose_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_transpose_count);
644
  LogQuantizedOpsCounter("transpose2", quantize_transpose_count);
645 646
}

647 648 649 650 651 652 653 654 655 656 657 658 659
void CPUQuantizePass::QuantizeReshape(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Reshape reshape_pattern{pattern, name_scope_};
  reshape_pattern();

  int quantize_reshape_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize reshape op";
    GET_IR_NODE_FROM_SUBGRAPH(reshape_op, reshape_op, reshape_pattern);

    // skip if should not be quantized
660
    if (!platform::HasOpINT8DataType(reshape_op->Op())) {
661
      LogQuantizationDisabled(reshape_op);
662 663 664
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, reshape_pattern);
665 666
    GET_IR_NODE_FROM_SUBGRAPH(reshape_in, reshape_in, reshape_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(reshape_out, reshape_out, reshape_pattern);
667

668 669
    // skip if prev op is not quantized
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(reshape_out))) {
670 671
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No other quantizable operators nearby");
672 673 674
      return;
    }

675
    if (!AreScalesPresentForNodes({reshape_in, reshape_out})) {
676 677
      MarkAndLogCannotQuantizeOp(reshape_op,
                                 "No scale available for the operator");
678
      return;
679
    }
680

681 682
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(reshape_in, &is_input_unsigned);
683 684 685
    QuantizeInput(g, reshape_op, reshape_in, "X", input_scale,
                  is_input_unsigned);

686 687
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(reshape_out, &is_output_unsigned);
688 689 690 691 692 693 694 695
    DequantizeOutput(g, reshape_op, reshape_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_reshape_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_reshape_count);
696
  LogQuantizedOpsCounter("reshape2", quantize_reshape_count);
697 698
}

Z
Zuza 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
void CPUQuantizePass::QuantizeSlice(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Slice slice_pattern{pattern, name_scope_};
  slice_pattern();

  int quantize_slice_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize slice op";
    GET_IR_NODE_FROM_SUBGRAPH(slice_op, slice_op, slice_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(slice_op->Op())) {
      LogQuantizationDisabled(slice_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, slice_pattern);
717 718
    GET_IR_NODE_FROM_SUBGRAPH(slice_in, slice_in, slice_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(slice_out, slice_out, slice_pattern);
Z
Zuza 已提交
719 720

    // skip if prev op and next op is not quantized
721
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(slice_out)) {
722 723
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No other quantizable operators nearby");
Z
Zuza 已提交
724 725 726 727
      return;
    }

    if (!AreScalesPresentForNodes({slice_out})) {
728 729
      MarkAndLogCannotQuantizeOp(slice_op,
                                 "No scale available for the operator");
Z
Zuza 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(slice_out, &is_input_unsigned);
    QuantizeInput(g, slice_op, slice_in, "Input", input_scale,
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(slice_out, &is_output_unsigned);
    DequantizeOutput(g, slice_op, slice_out, "Out", output_scale,
                     is_output_unsigned);

    ++quantize_slice_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_slice_count);
748
  LogQuantizedOpsCounter("slice", quantize_slice_count);
Z
Zuza 已提交
749 750
}

751 752 753
void CPUQuantizePass::QuantizeMatmul(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
754
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
755 756 757 758 759 760 761 762 763
  matmul_pattern();

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
764
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
765
      LogQuantizationDisabled(matmul_op);
766 767 768 769 770 771 772
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
    if (!IsOpDequantized(prev_op_x) || !IsOpDequantized(prev_op_y)) {
773 774
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No other quantizable operators nearby");
775 776 777 778 779 780
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

781
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
782 783
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No scale available for the operator");
784
      return;
785
    }
786

787 788 789
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
790 791 792 793 794 795
    PADDLE_ENFORCE_EQ(is_x_unsigned, is_y_unsigned,
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
                          is_x_unsigned, is_y_unsigned));
796 797 798 799 800
    QuantizeInput(g, matmul_op, matmul_in_x, "X", input_x_scale, is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g, matmul_op, matmul_in_y, "Y", input_y_scale, is_y_unsigned,
                  "Scale_y");

801
    // if quantization scale is missing for output tensor, return fp32 data
802
    if (AreScalesPresentForNodes({matmul_out})) {
803 804 805 806 807 808 809
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
      DequantizeOutput(g, matmul_op, matmul_out, "Out", output_scale,
                       is_output_unsigned, "Scale_out");
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
810 811 812 813 814

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);
815
  LogQuantizedOpsCounter("matmul", quantize_matmul_count);
816 817
}

Z
Zuza 已提交
818 819
void CPUQuantizePass::QuantizeElementwise(
    Graph* graph, const std::string elementwise_type) const {
820 821
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
Z
Zuza 已提交
822
  patterns::Elementwise elementwise_pattern{pattern, name_scope_};
823

Z
Zuza 已提交
824 825 826 827
  elementwise_pattern(
      pattern->NewNode(elementwise_pattern.elementwise_x_repr()),
      pattern->NewNode(elementwise_pattern.elementwise_y_repr()),
      elementwise_type);
828

Z
Zuza 已提交
829
  int quantize_elementwise_count = 0;
830 831
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Z
Zuza 已提交
832 833 834
    VLOG(4) << "Quantize " + elementwise_type + " op";
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_op, elementwise_op,
                              elementwise_pattern);
835 836

    // skip if should not be quantized
Z
Zuza 已提交
837 838
    if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
      LogQuantizationDisabled(elementwise_op);
839 840 841
      return;
    }

Z
Zuza 已提交
842 843 844 845 846 847
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_x, elementwise_x,
                              elementwise_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_y, elementwise_y,
                              elementwise_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(elementwise_out, elementwise_out,
                              elementwise_pattern);
848

849
    if (!AreScalesPresentForNodes(
Z
Zuza 已提交
850
            {elementwise_x, elementwise_y, elementwise_out})) {
851 852
      MarkAndLogCannotQuantizeOp(elementwise_op,
                                 "No scale available for the operator");
853 854 855 856
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
Z
Zuza 已提交
857 858
    auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
859 860 861

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
862 863
      MarkAndLogCannotQuantizeOp(
          elementwise_op, "Elementwise inputs must be of the same type.");
864 865 866
      return;
    }

Z
Zuza 已提交
867
    QuantizeInput(g, elementwise_op, elementwise_x, "X", input_x_scale,
868
                  is_x_unsigned, "Scale_x");
Z
Zuza 已提交
869
    QuantizeInput(g, elementwise_op, elementwise_y, "Y", input_y_scale,
870 871
                  is_y_unsigned, "Scale_y");

872 873
    bool is_output_unsigned{false};
    auto output_scale =
Z
Zuza 已提交
874
        GetScaleValueForNode(elementwise_out, &is_output_unsigned);
875

Z
Zuza 已提交
876 877
    DequantizeOutput(g, elementwise_op, elementwise_out, "Out", output_scale,
                     is_output_unsigned, "Scale_out");
878

Z
Zuza 已提交
879
    ++quantize_elementwise_count;
880 881
  };
  gpd(graph, handler);
Z
Zuza 已提交
882
  AddStatis(quantize_elementwise_count);
883
  LogQuantizedOpsCounter(elementwise_type, quantize_elementwise_count);
884 885
}

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

908
    if (!AreScalesPresentForNodes({x, weight_x})) {
909
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
910 911 912 913 914 915 916 917 918 919 920 921 922 923
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
924
                                     weight_scale_tensor.numel()};
925 926 927 928 929 930 931 932 933 934 935 936 937
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
938
  LogQuantizedOpsCounter("fusion_gru", quantize_count);
939 940
}

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
965
      MarkAndLogCannotQuantizeOp(gru, "No scale available for the operator");
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, gru, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

988
      scale_var_desc.SetShape(phi::vectorize(scale_tensor_src.dims()));
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
          scope->Var(w_scale_node->Name())->GetMutable<LoDTensor>();
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1015
  LogQuantizedOpsCounter("multi_gru", quantize_count);
1016 1017
}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
1043
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

    QuantizeInput(g, op, x, "X", input_x_scale, is_x_unsigned, "Scale_data",
                  input_x_shift, "Shift_data");

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1072
  LogQuantizedOpsCounter("fusion_lstm", quantize_count);
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
void CPUQuantizePass::QuantizeNearestInterp(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::NearestInterp nearest_interp_pattern{pattern, name_scope_};
  nearest_interp_pattern();

  int quantize_nearest_interp_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize nearest_interp op";
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_op, nearest_interp_op,
                              nearest_interp_pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(nearest_interp_op->Op())) {
      LogQuantizationDisabled(nearest_interp_op);
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, nearest_interp_pattern);
1094 1095 1096 1097
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_in, nearest_interp_in,
                              nearest_interp_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(nearest_interp_out, nearest_interp_out,
                              nearest_interp_pattern);
1098 1099

    // skip if prev op and next op is not quantized
1100
    if (!(IsOpDequantized(prev_op)) && !(IsOpQuantized(nearest_interp_out))) {
1101 1102
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No other quantizable operators nearby");
1103 1104 1105 1106
      return;
    }

    if (!AreScalesPresentForNodes({nearest_interp_in, nearest_interp_out})) {
1107 1108
      MarkAndLogCannotQuantizeOp(nearest_interp_op,
                                 "No scale available for the operator");
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
      return;
    }

    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(nearest_interp_in, &is_input_unsigned);
    QuantizeInput(g, nearest_interp_op, nearest_interp_in, "X", input_scale,
                  is_input_unsigned);

    bool is_output_unsigned{false};
    auto output_scale =
        GetScaleValueForNode(nearest_interp_out, &is_output_unsigned);
    DequantizeOutput(g, nearest_interp_op, nearest_interp_out, "Out",
                     output_scale, is_output_unsigned);

    ++quantize_nearest_interp_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_nearest_interp_count);
1129
  LogQuantizedOpsCounter("nearest_interp", quantize_nearest_interp_count);
1130 1131
}

1132
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1133
  VLOG(3) << "Quantizing the graph.";
1134 1135
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1136
  FusePassBase::Init(name_scope_, graph);
1137

1138 1139
  PADDLE_ENFORCE_NOT_NULL(param_scope(), platform::errors::InvalidArgument(
                                             "Scope cannot be nullptr."));
1140

1141 1142 1143
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
1144
  QuantizeConcat(graph);
1145
  QuantizePriorBox(graph);
1146
  QuantizeTranspose(graph);
M
Michał Gallus 已提交
1147
  QuantizeFc(graph);
1148
  QuantizeReshape(graph);
1149
  QuantizeMatmul(graph);
Z
Zuza 已提交
1150 1151
  QuantizeElementwise(graph, "elementwise_add");
  QuantizeElementwise(graph, "elementwise_mul");
1152
  QuantizeFusionGru(graph);
1153
  QuantizeMultiGru(graph);
1154
  QuantizeFusionLSTM(graph);
Z
Zuza 已提交
1155
  QuantizeSlice(graph);
1156
  QuantizeNearestInterp(graph);
1157 1158 1159 1160 1161 1162 1163 1164
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");