cudnn_helper.h 15.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

Q
qingqing01 已提交
17
#include <string>
Y
Pass CI  
Yu Yang 已提交
18
#include <vector>
19

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/enforce.h"
K
Kexin Zhao 已提交
22
#include "paddle/fluid/platform/float16.h"
Y
Yi Wang 已提交
23
#include "paddle/fluid/platform/macros.h"
D
dangqingqing 已提交
24

D
dzhwinter 已提交
25 26
DECLARE_bool(cudnn_deterministic);

D
dangqingqing 已提交
27 28 29
namespace paddle {
namespace platform {

Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
inline const char* cudnnGetErrorString(cudnnStatus_t status) {
  switch (status) {
    case CUDNN_STATUS_SUCCESS:
      return "CUDNN_STATUS_SUCCESS";
    case CUDNN_STATUS_NOT_INITIALIZED:
      return "CUDNN_STATUS_NOT_INITIALIZED";
    case CUDNN_STATUS_ALLOC_FAILED:
      return "CUDNN_STATUS_ALLOC_FAILED";
    case CUDNN_STATUS_BAD_PARAM:
      return "CUDNN_STATUS_BAD_PARAM";
    case CUDNN_STATUS_INTERNAL_ERROR:
      return "CUDNN_STATUS_INTERNAL_ERROR";
    case CUDNN_STATUS_INVALID_VALUE:
      return "CUDNN_STATUS_INVALID_VALUE";
    case CUDNN_STATUS_ARCH_MISMATCH:
      return "CUDNN_STATUS_ARCH_MISMATCH";
    case CUDNN_STATUS_MAPPING_ERROR:
      return "CUDNN_STATUS_MAPPING_ERROR";
    case CUDNN_STATUS_EXECUTION_FAILED:
      return "CUDNN_STATUS_EXECUTION_FAILED";
    case CUDNN_STATUS_NOT_SUPPORTED:
      return "CUDNN_STATUS_NOT_SUPPORTED";
    case CUDNN_STATUS_LICENSE_ERROR:
      return "CUDNN_STATUS_LICENSE_ERROR";
    default:
      return "Unknown cudnn error number";
  }
}

#define CUDNN_VERSION_MIN(major, minor, patch) \
  (CUDNN_VERSION >= ((major)*1000 + (minor)*100 + (patch)))

T
typhoonzero 已提交
62 63
#define CUDNN_ENFORCE(condition)                                     \
  do {                                                               \
P
peizhilin 已提交
64
    auto status = condition;                                         \
T
typhoonzero 已提交
65 66 67
    if (UNLIKELY(status != CUDNN_STATUS_SUCCESS)) {                  \
      PADDLE_THROW(::paddle::platform::cudnnGetErrorString(status)); \
    }                                                                \
Q
Qiao Longfei 已提交
68 69
  } while (false)

D
"fix"  
dzhwinter 已提交
70 71 72 73 74 75 76 77 78 79
enum class DataLayout {  // Not use
  kNHWC,
  kNCHW,
  kNCDHW,
  kNCHW_VECT_C,
};

enum class PoolingMode {
  kMaximum,
  kMaximumDeterministic,
80 81
  kAverageExclusive,
  kAverageInclusive,
D
"fix"  
dzhwinter 已提交
82 83
};

Q
qingqing01 已提交
84 85 86 87 88 89 90 91 92 93
enum ActivationMode {
  kNone,  // activation identity
  kSigmoid,
  kRelu,
  kRelu6,
  kReluX,
  kTanh,
  kBandPass,
};

D
"done"  
dzhwinter 已提交
94 95 96 97 98 99
#if CUDNN_VERSION < 6000
#pragma message "CUDNN version under 6.0 is supported at best effort."
#pragma message "We strongly encourage you to move to 6.0 and above."
#pragma message "This message is intended to annoy you enough to update."
#pragma message \
    "please see https://docs.nvidia.com/deeplearning/sdk/cudnn-release-notes/"
D
dangqingqing 已提交
100

D
dzhwinter 已提交
101 102 103 104
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX;
105
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
106
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
107 108
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
109 110 111 112 113 114 115
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
#else
D
dangqingqing 已提交
116

D
dzhwinter 已提交
117 118 119 120
inline cudnnPoolingMode_t GetPoolingMode(const PoolingMode& mode) {
  switch (mode) {
    case PoolingMode::kMaximumDeterministic:
      return CUDNN_POOLING_MAX_DETERMINISTIC;
121
    case PoolingMode::kAverageExclusive:
D
dzhwinter 已提交
122
      return CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING;
123 124
    case PoolingMode::kAverageInclusive:
      return CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING;
D
dzhwinter 已提交
125 126 127 128 129 130
    case PoolingMode::kMaximum:
      return CUDNN_POOLING_MAX;
    default:
      PADDLE_THROW("Unexpected pooling mode.");
  }
}
D
dzhwinter 已提交
131 132
#endif  // CUDNN_VERSION < 6000

Q
qingqing01 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
inline ActivationMode StringToActivationMode(const std::string& str) {
  if (str == "identity") {
    return ActivationMode::kNone;
  } else if (str == "sigmoid") {
    return ActivationMode::kSigmoid;
  } else if (str == "relu") {
    return ActivationMode::kRelu;
  } else if (str == "relu6") {
    return ActivationMode::kRelu6;
  } else if (str == "relux") {
    return ActivationMode::kReluX;
  } else if (str == "tanh") {
    return ActivationMode::kTanh;
  } else if (str == "bandpass") {
    return ActivationMode::kBandPass;
  } else {
    PADDLE_THROW("Unknown activation string: %s", str);
  }
}

D
dangqingqing 已提交
153 154 155
template <typename T>
class CudnnDataType;

K
Kexin Zhao 已提交
156 157 158 159
template <>
class CudnnDataType<float16> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_HALF;
K
Kexin Zhao 已提交
160
  // The scaling param type is float for HALF and FLOAT tensors
K
update  
Kexin Zhao 已提交
161 162
  using ScalingParamType = const float;
  using BatchNormParamType = float;
K
Kexin Zhao 已提交
163
  static ScalingParamType* kOne() {
K
Kexin Zhao 已提交
164
    static ScalingParamType v = 1.0;
K
Kexin Zhao 已提交
165 166 167
    return &v;
  }
  static ScalingParamType* kZero() {
K
Kexin Zhao 已提交
168
    static ScalingParamType v = 0.0;
K
Kexin Zhao 已提交
169 170 171 172
    return &v;
  }
};

D
dangqingqing 已提交
173 174 175 176
template <>
class CudnnDataType<float> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_FLOAT;
K
update  
Kexin Zhao 已提交
177 178
  using ScalingParamType = const float;
  using BatchNormParamType = float;
Q
Qiao Longfei 已提交
179 180 181 182 183 184 185 186
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
187 188 189 190 191 192
};

template <>
class CudnnDataType<double> {
 public:
  static const cudnnDataType_t type = CUDNN_DATA_DOUBLE;
K
update  
Kexin Zhao 已提交
193 194
  using ScalingParamType = const double;
  using BatchNormParamType = double;
Q
Qiao Longfei 已提交
195 196 197 198 199 200 201 202
  static ScalingParamType* kOne() {
    static ScalingParamType v = 1.0;
    return &v;
  }
  static ScalingParamType* kZero() {
    static ScalingParamType v = 0.0;
    return &v;
  }
D
dangqingqing 已提交
203 204
};

C
chengduoZH 已提交
205 206
inline cudnnTensorFormat_t GetCudnnTensorFormat(
    const DataLayout& order) {  // Not use
D
dangqingqing 已提交
207 208 209 210 211
  switch (order) {
    case DataLayout::kNHWC:
      return CUDNN_TENSOR_NHWC;
    case DataLayout::kNCHW:
      return CUDNN_TENSOR_NCHW;
C
chengduoZH 已提交
212
    case DataLayout::kNCDHW:
武毅 已提交
213
      return CUDNN_TENSOR_NCHW;  // NOTE: cudnn treat NdTensor as the same
D
dangqingqing 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    default:
      PADDLE_THROW("Unknown cudnn equivalent for order");
  }
  return CUDNN_TENSOR_NCHW;
}

class ScopedTensorDescriptor {
 public:
  ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateTensorDescriptor(&desc_));
  }
  ~ScopedTensorDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyTensorDescriptor(desc_));
  }

  inline cudnnTensorDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
231 232 233
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    // the format is not used now, will add later
D
dangqingqing 已提交
234 235
    std::vector<int> strides(dims.size());
    strides[dims.size() - 1] = 1;
236 237
    for (int i = dims.size() - 2; i >= 0; i--) {
      strides[i] = dims[i + 1] * strides[i + 1];
D
dangqingqing 已提交
238
    }
武毅 已提交
239
    // Update tensor descriptor dims setting if groups > 1
武毅 已提交
240
    // NOTE: Assume using NCHW or NCDHW order
武毅 已提交
241 242 243 244
    std::vector<int> dims_with_group(dims.begin(), dims.end());  // copy
    if (groups > 1) {
      dims_with_group[1] = dims_with_group[1] / groups;
    }
245
    PADDLE_ENFORCE(dynload::cudnnSetTensorNdDescriptor(
武毅 已提交
246 247
        desc_, type, dims_with_group.size(), dims_with_group.data(),
        strides.data()));
D
dangqingqing 已提交
248 249 250 251 252
    return desc_;
  }

  template <typename T>
  inline cudnnTensorDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
253 254 255 256
                                            const std::vector<int>& dims,
                                            const int groups = 1) {
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type, dims,
                      groups);
D
dangqingqing 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  }

 private:
  cudnnTensorDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedTensorDescriptor);
};

class ScopedFilterDescriptor {
 public:
  ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateFilterDescriptor(&desc_));
  }
  ~ScopedFilterDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyFilterDescriptor(desc_));
  }

  inline cudnnFilterDescriptor_t descriptor(const cudnnTensorFormat_t format,
                                            const cudnnDataType_t type,
武毅 已提交
275 276
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
C
chengduoZH 已提交
277
    // filter layout: MCHW(MCDHW), where M is the number of
武毅 已提交
278
    // output image channels, C is the number of input image channels,
C
chengduoZH 已提交
279 280
    // D is the depth of the filter, H is the height of the filter, and W is the
    // width of the filter.
武毅 已提交
281 282 283 284 285
    std::vector<int> kernel_with_group(kernel.begin(), kernel.end());
    if (groups > 1) {
      kernel_with_group[0] /= groups;
      // NOTE: input filter(C) of the filter is already asserted to be C/groups.
    }
286
    PADDLE_ENFORCE(dynload::cudnnSetFilterNdDescriptor(
武毅 已提交
287 288
        desc_, type, format, kernel_with_group.size(),
        kernel_with_group.data()));
D
dangqingqing 已提交
289 290 291 292 293
    return desc_;
  }

  template <typename T>
  inline cudnnFilterDescriptor_t descriptor(const DataLayout& order,
武毅 已提交
294 295
                                            const std::vector<int>& kernel,
                                            const int groups = 1) {
D
dangqingqing 已提交
296
    return descriptor(GetCudnnTensorFormat(order), CudnnDataType<T>::type,
武毅 已提交
297
                      kernel, groups);
D
dangqingqing 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
  }

 private:
  cudnnFilterDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedFilterDescriptor);
};

class ScopedConvolutionDescriptor {
 public:
  ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateConvolutionDescriptor(&desc_));
  }
  ~ScopedConvolutionDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyConvolutionDescriptor(desc_));
  }

  inline cudnnConvolutionDescriptor_t descriptor(
      cudnnDataType_t type, const std::vector<int>& pads,
      const std::vector<int>& strides, const std::vector<int>& dilations) {
    PADDLE_ENFORCE_EQ(pads.size(), strides.size());
    PADDLE_ENFORCE_EQ(pads.size(), dilations.size());
319

320
#if !CUDNN_VERSION_MIN(6, 0, 0)
321 322 323 324 325
    // cudnn v5 does not support dilation conv, the argument is called upscale
    // instead of dilations and it is must be one.
    for (size_t i = 0; i < dilations.size(); ++i) {
      PADDLE_ENFORCE_EQ(
          dilations[i], 1,
326 327 328
          "Dilations conv is not supported in this cuDNN version(%d.%d.%d).",
          CUDNN_VERSION / 1000, CUDNN_VERSION % 1000 / 100,
          CUDNN_VERSION % 100);
329 330 331
    }
#endif

K
Kexin Zhao 已提交
332 333
    cudnnDataType_t compute_type =
        (type == CUDNN_DATA_DOUBLE) ? CUDNN_DATA_DOUBLE : CUDNN_DATA_FLOAT;
334
    PADDLE_ENFORCE(dynload::cudnnSetConvolutionNdDescriptor(
D
dangqingqing 已提交
335
        desc_, pads.size(), pads.data(), strides.data(), dilations.data(),
K
Kexin Zhao 已提交
336
        CUDNN_CROSS_CORRELATION, compute_type));
337
    return desc_;
D
dangqingqing 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
  }

  template <typename T>
  inline cudnnConvolutionDescriptor_t descriptor(
      const std::vector<int>& pads, const std::vector<int>& strides,
      const std::vector<int>& dilations) {
    return descriptor(CudnnDataType<T>::type, pads, strides, dilations);
  }

 private:
  cudnnConvolutionDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedConvolutionDescriptor);
};

class ScopedPoolingDescriptor {
 public:
  ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreatePoolingDescriptor(&desc_));
  }
  ~ScopedPoolingDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyPoolingDescriptor(desc_));
  }

  inline cudnnPoolingDescriptor_t descriptor(const PoolingMode& mode,
                                             const std::vector<int>& kernel,
                                             const std::vector<int>& pads,
                                             const std::vector<int>& strides) {
    PADDLE_ENFORCE_EQ(kernel.size(), pads.size());
    PADDLE_ENFORCE_EQ(kernel.size(), strides.size());
367
    PADDLE_ENFORCE(dynload::cudnnSetPoolingNdDescriptor(
D
dzhwinter 已提交
368
        desc_, (GetPoolingMode(mode)),
D
dangqingqing 已提交
369 370
        CUDNN_PROPAGATE_NAN,  // Always propagate nans.
        kernel.size(), kernel.data(), pads.data(), strides.data()));
371
    return desc_;
D
dangqingqing 已提交
372 373 374 375 376 377 378
  }

 private:
  cudnnPoolingDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedPoolingDescriptor);
};

W
whs 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
class ScopedSpatialTransformerDescriptor {
 public:
  ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateSpatialTransformerDescriptor(&desc_));
  }
  ~ScopedSpatialTransformerDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroySpatialTransformerDescriptor(desc_));
  }

  template <typename T>
  inline cudnnSpatialTransformerDescriptor_t descriptor(const int nbDims,
                                                        const int dimA[]) {
    PADDLE_ENFORCE(dynload::cudnnSetSpatialTransformerNdDescriptor(
        desc_, CUDNN_SAMPLER_BILINEAR, CudnnDataType<T>::type, nbDims, dimA));
    return desc_;
  }

 private:
  cudnnSpatialTransformerDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedSpatialTransformerDescriptor);
};

Q
qingqing01 已提交
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
class ScopedActivationDescriptor {
 public:
  ScopedActivationDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateActivationDescriptor(&desc_));
  }
  ~ScopedActivationDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyActivationDescriptor(desc_));
  }

  template <typename T>
  inline cudnnActivationDescriptor_t descriptor(
      const std::string& act, double value_max = static_cast<double>(0.)) {
    double relu_ceiling = 0.0;
    ActivationMode activation_mode = StringToActivationMode(act);
    cudnnActivationMode_t mode;
    switch (activation_mode) {
#if CUDNN_VERSION >= 7100
      case ActivationMode::kNone:
        mode = CUDNN_ACTIVATION_IDENTITY;
        break;
#endif
      case ActivationMode::kRelu6:
        relu_ceiling = 6.0;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kReluX:
        relu_ceiling = value_max;
        mode = CUDNN_ACTIVATION_CLIPPED_RELU;
        break;
      case ActivationMode::kRelu:
        mode = CUDNN_ACTIVATION_RELU;
        break;
      case ActivationMode::kSigmoid:
        mode = CUDNN_ACTIVATION_SIGMOID;
        break;
      case ActivationMode::kTanh:
        mode = CUDNN_ACTIVATION_TANH;
        break;
      default:
        PADDLE_THROW("unrecognized activation mode: %d .",
                     static_cast<int>(activation_mode));
    }
    CUDNN_ENFORCE(dynload::cudnnSetActivationDescriptor(
        desc_, mode, CUDNN_NOT_PROPAGATE_NAN, relu_ceiling));
    return desc_;
  }

 private:
  cudnnActivationDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedActivationDescriptor);
};

W
Wu Yi 已提交
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
#if CUDNN_VERSION >= 7001
class ScopedCTCLossDescriptor {
 public:
  ScopedCTCLossDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnCreateCTCLossDescriptor(&desc_));
  }
  ~ScopedCTCLossDescriptor() {
    PADDLE_ENFORCE(dynload::cudnnDestroyCTCLossDescriptor(desc_));
  }

  template <typename T>
  inline cudnnCTCLossDescriptor_t descriptor() {
    PADDLE_ENFORCE(
        dynload::cudnnSetCTCLossDescriptor(desc_, CudnnDataType<T>::type));
    return desc_;
  }

 private:
  cudnnCTCLossDescriptor_t desc_;
  DISABLE_COPY_AND_ASSIGN(ScopedCTCLossDescriptor);
};
#endif

D
dangqingqing 已提交
476 477
}  // namespace platform
}  // namespace paddle