paddle_pass_builder.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include <glog/logging.h>

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
67 68
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
69 70
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

73
const std::vector<std::string> kTRTSubgraphPasses({
74 75
  "conv_affine_channel_fuse_pass",  //
      "adaptive_pool2d_convert_global_pass",
76
      "conv_eltwiseadd_affine_channel_fuse_pass",  //
77
      "shuffle_channel_detect_pass",               //
78 79
      "quant_conv2d_dequant_fuse_pass",            //
      "delete_quant_dequant_op_pass",              //
P
Pei Yang 已提交
80
      // "fc_fuse_pass",                                 //
81 82 83 84
      "simplify_with_basic_ops_pass",           //
      "embedding_eltwise_layernorm_fuse_pass",  //
      "multihead_matmul_fuse_pass_v2",          //
      "skip_layernorm_fuse_pass",               //
85 86 87 88 89 90 91 92
      "conv_bn_fuse_pass",                      //
      "unsqueeze2_eltwise_fuse_pass",           //
      "squeeze2_matmul_fuse_pass",              //
      "reshape2_matmul_fuse_pass",              //
      "map_matmul_to_mul_pass",                 //
      "fc_fuse_pass",                           //
      "tensorrt_subgraph_pass",                 //
      "conv_bn_fuse_pass",                      //
93 94 95 96 97 98 99 100 101
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
      "conv_elementwise_add_fuse_pass",       //
#endif                                        //
      "transpose_flatten_concat_fuse_pass",
});

石晓伟 已提交
102 103 104 105 106 107
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

108 109
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
110
    //   "identity_scale_op_clean_pass",             //
111 112 113
    "is_test_pass",                                  //
        "simplify_with_basic_ops_pass",              //
        "conv_affine_channel_fuse_pass",             //
114 115
        "conv_eltwiseadd_affine_channel_fuse_pass",  //
        "conv_bn_fuse_pass",                         //
116
        "conv_eltwiseadd_bn_fuse_pass",              //
117 118
        "embedding_eltwise_layernorm_fuse_pass",     //
        "multihead_matmul_fuse_pass_v2",             //
119 120 121
        "squeeze2_matmul_fuse_pass",                 //
        "reshape2_matmul_fuse_pass",                 //
        "map_matmul_to_mul_pass",                    //
122 123
        "fc_fuse_pass",                              //
        "fc_elementwise_layernorm_fuse_pass",        //
124 125 126 127 128
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
        "conv_elementwise_add_fuse_pass",       //
N
nhzlx 已提交
129
#endif                                          //
石晓伟 已提交
130
        "transpose_flatten_concat_fuse_pass",   //
131
        // following pass should be located in the last, since it will
132 133
        // work on all fused ops.
        "runtime_context_cache_pass"
134 135 136 137 138
  });

  use_gpu_ = true;
}

139 140 141 142 143 144 145
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
146 147
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
148 149
}

W
Wojciech Uss 已提交
150 151
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
152 153
}

154 155 156 157
void GpuPassStrategy::EnableMkldnnBfloat16() {
  LOG(ERROR) << "GPU not support MKL-DNN bfloat16";
}

158 159 160
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
161 162
  passes_.assign({"simplify_with_basic_ops_pass",   //
                  "attention_lstm_fuse_pass",       //
163 164
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
165
                  "seqpool_cvm_concat_fuse_pass",  //
166
                  // "embedding_fc_lstm_fuse_pass", //
167 168
                  // TODO(wilber): fix correctness problem.
                  // "fc_lstm_fuse_pass",                       //
169 170 171 172
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
173 174 175
                  "squeeze2_matmul_fuse_pass",               //
                  "reshape2_matmul_fuse_pass",               //
                  "map_matmul_to_mul_pass",                  //
176 177 178 179 180 181 182 183
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
184 185
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
186
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
187

188 189
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
190

191 192
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
193 194 195 196 197 198
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

199
    for (auto &pass : std::vector<std::string>({
200 201 202 203 204 205 206 207
             "depthwise_conv_mkldnn_pass",     //
             "conv_bn_fuse_pass",              // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",   // preserve correct pass order
             "conv_affine_channel_fuse_pass",  //
             "conv_eltwiseadd_affine_channel_fuse_pass",  //
             "conv_transpose_bn_fuse_pass",               //
             "conv_transpose_eltwiseadd_bn_fuse_pass",    //
             "conv_bias_mkldnn_fuse_pass",                //
208
             "conv_transpose_bias_mkldnn_fuse_pass",
209 210 211
             "conv3d_bias_mkldnn_fuse_pass",  //
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
212 213 214 215 216 217 218
             "conv_relu_mkldnn_fuse_pass",                 //
             "conv_leaky_relu_mkldnn_fuse_pass",           //
             "conv_relu6_mkldnn_fuse_pass",                //
             "conv_swish_mkldnn_fuse_pass",                //
             "scale_matmul_fuse_pass",                     //
             "reshape_transpose_matmul_mkldnn_fuse_pass",  //
             "matmul_transpose_reshape_fuse_pass",         //
219
             // Disabled due to topology-dependent speed-up
220 221
             // "fc_mkldnn_pass",
             // "fc_act_mkldnn_fuse_pass",
222
             "batch_norm_act_fuse_pass",
223 224 225
#ifndef _WIN32
             // TODO(intel): Please fix the bug on windows.
             // https://github.com/PaddlePaddle/Paddle/issues/29710
226 227
             "mkldnn_inplace_pass",  // This pass should be activated after
                                     // fuses
228
#endif
229
         })) {
W
Wojciech Uss 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

250 251
void CpuPassStrategy::EnableMkldnnBfloat16() {
#ifdef PADDLE_WITH_MKLDNN
252 253 254 255
  if (!use_mkldnn_bfloat16_) {
    passes_.push_back("cpu_bfloat16_placement_pass");
    passes_.push_back("cpu_bfloat16_pass");
  }
256 257 258 259 260 261
  use_mkldnn_bfloat16_ = true;
#else
  use_mkldnn_bfloat16_ = false;
#endif
}

262
}  // namespace paddle