test_orig2prim.py 26.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.utils import flatten
from paddle.incubate.autograd.primrules import _orig2prim, _prim2orig, _jvp, _transpose
21
import paddle.fluid.core as core
22 23 24 25 26 27

paddle.enable_static()


############################ Test orig2prim rules ############################
class TestElementWiseAddOrig2Prim(unittest.TestCase):
28

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    def setUp(self):
        self.main_program = paddle.static.Program()
        self.startup_program = paddle.static.Program()
        self.layer_help = LayerHelper('TestOrig2Prim')

        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
            self.init_data()

    def init_data(self):
        self.op_type = 'elementwise_add'
        X = paddle.static.data(name='X', shape=[2, 2], dtype='float')
        Y = paddle.static.data(name='Y', shape=[2, 2], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_add', 'add_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}

    def test_op(self):
        with paddle.static.program_guard(self.main_program,
                                         self.startup_program):
58 59 60 61
            op = self.layer_help.append_op(type=self.op_type,
                                           inputs=self.input,
                                           outputs=self.output,
                                           attrs=self.attrs)
62 63 64 65 66 67 68 69 70 71 72

            prim_out = _orig2prim(op, *self.orig2prim_args)
            all_ops = [op.type for op in self.main_program.block(0).ops]

            self.assertEqual(sorted(all_ops), sorted(self.all_ops))
            prim_out = flatten(prim_out)
            for k, v in self.out_map.items():
                self.assertEqual(prim_out[k].shape, v.shape)


class TestSqrtOrig2Prim(TestElementWiseAddOrig2Prim):
73

74 75 76 77
    def init_data(self):
        self.op_type = 'sqrt'
        X = paddle.static.data(name='X', shape=[7, 8], dtype='float64')

78 79 80
        self.input = {
            'X': X,
        }
81 82 83 84 85 86 87 88 89 90 91 92 93
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sqrt', 'sqrt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestElementWiseMulOrig2Prim(TestElementWiseAddOrig2Prim):
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
    def init_data(self):
        self.op_type = 'elementwise_mul'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_mul', 'mul_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class TestElementWiseDivOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_div'
        X = paddle.static.data(name='X', shape=[8, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[8, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_div', 'div_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


133
class TestMatmulV2Orig2Prim(TestElementWiseAddOrig2Prim):
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
    def init_data(self):
        self.op_type = 'matmul_v2'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')
        Y = paddle.static.data(name='Y', shape=[4, 3], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'trans_x': True, 'trans_y': True}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['matmul_v2', 'transpose_p', 'transpose_p', 'matmul_p']
        self.out_map = {0: self.output['Out']}


class TestTanhOrig2Prim(TestElementWiseAddOrig2Prim):
153

154 155 156 157
    def init_data(self):
        self.op_type = 'tanh'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

158 159 160
        self.input = {
            'X': X,
        }
161 162 163 164 165 166 167 168 169 170 171
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['tanh', 'tanh_p']
        self.out_map = {0: self.output['Out']}


172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
class TestSinOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'sin'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['sin', 'sin_p']
        self.out_map = {0: self.output['Out']}


class TestCosOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'cos'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['cos', 'cos_p']
        self.out_map = {0: self.output['Out']}


class TestExpOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'exp'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['exp', 'exp_p']
        self.out_map = {0: self.output['Out']}


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
class TestErfOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'erf'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['erf', 'erf_p']
        self.out_map = {0: self.output['Out']}


252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
class TestAbsOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'abs'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['abs', 'abs_p']
        self.out_map = {0: self.output['Out']}


272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
class TestLogOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'log'
        X = paddle.static.data(name='X', shape=[3, 4], dtype='float')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['log', 'log_p']
        self.out_map = {0: self.output['Out']}


292
class TestReshape2Orig2Prim(TestElementWiseAddOrig2Prim):
293

294 295 296 297
    def init_data(self):
        self.op_type = 'reshape2'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

298 299 300
        self.input = {
            'X': X,
        }
301
        self.output = {
302 303
            'Out':
            X,
304 305 306 307 308 309 310 311
            'XShape':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'shape': [6, 5]}

        self.orig2prim_args = (
            None,
            None,
312 313
            X,
        )
314 315 316 317 318 319
        self.all_ops = ['reshape2', 'reshape_p', 'fill_constant_p']
        # Do not checke XShape
        self.out_map = {0: self.output['Out']}


class TestConcatOrig2Prim(TestElementWiseAddOrig2Prim):
320

321 322 323 324 325
    def init_data(self):
        self.op_type = 'concat'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[3, 6], dtype='int64')

326 327 328
        self.input = {
            'X': [X, Y],
        }
329 330 331 332 333 334 335 336
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': 0}

        self.orig2prim_args = (
            None,
337 338
            (X, Y),
        )
339 340 341 342 343
        self.all_ops = ['concat', 'concat_p']
        self.out_map = {0: self.output['Out']}


class TestSliceOrig2Prim(TestElementWiseAddOrig2Prim):
344

345 346 347 348
    def init_data(self):
        self.op_type = 'slice'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

349 350 351
        self.input = {
            'Input': X,
        }
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'axes': [0],
            'starts': [1],
            'ends': [4],
        }

        self.orig2prim_args = (None, None, X, None, None)
        self.all_ops = ['slice', 'slice_select_p']
        self.out_map = {0: self.output['Out']}


class TestFillZerosLikeOrig2Prim(TestElementWiseAddOrig2Prim):
368

369 370 371 372
    def init_data(self):
        self.op_type = 'fill_zeros_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

373 374 375
        self.input = {
            'X': X,
        }
376 377 378 379 380 381 382 383 384 385 386
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_zeros_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
class TestFillAnyLikeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


class TestFillAnyLikeOrig2Prim2(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'fill_any_like'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

        self.input = {
            'X': X,
        }
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'dtype': paddle.float32, 'value': 5}

        self.orig2prim_args = (X, )
        self.all_ops = ['fill_any_like', 'fill_constant_p']
        self.out_map = {0: self.output['Out']}


427
class TestSumOrig2Prim(TestElementWiseAddOrig2Prim):
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
    def init_data(self):
        self.op_type = 'sum'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='int64')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = ((X, Y), )
        self.all_ops = ['sum', 'add_p']
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim1(TestElementWiseAddOrig2Prim):
447

448 449 450 451
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

452 453 454
        self.input = {
            'X': X,
        }
455 456 457 458 459 460 461 462 463 464
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 1,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
465 466 467
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
468 469 470 471
        self.out_map = {0: self.output['Out']}


class TestPNormOrig2Prim2(TestElementWiseAddOrig2Prim):
472

473 474 475 476
    def init_data(self):
        self.op_type = 'p_norm'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')

477 478 479
        self.input = {
            'X': X,
        }
480 481 482 483 484 485 486 487 488 489
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {
            'porder': 2,
            'asvector': True,
        }

        self.orig2prim_args = (X, )
490 491 492
        self.all_ops = [
            'p_norm', 'reshape_p', 'sqrt_p', 'reduce_sum_p', 'mul_p'
        ]
493 494 495 496
        self.out_map = {0: self.output['Out']}


class TestIndexSelectOrig2Prim(TestElementWiseAddOrig2Prim):
497

498 499 500 501 502 503 504 505 506 507
    def init_data(self):
        self.op_type = 'index_select'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int64')
        Index = paddle.static.data(name='Index', shape=[2], dtype='int32')

        self.input = {'X': X, 'Index': Index}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
508 509 510
        self.attrs = {
            'dim': 0,
        }
511 512 513

        self.orig2prim_args = (
            Index,
514 515
            X,
        )
516 517 518 519 520
        self.all_ops = ['index_select', 'gather_p']
        self.out_map = {0: self.output['Out']}


class TestElementwiseSubOrig2Prim(TestElementWiseAddOrig2Prim):
521

522 523 524 525 526 527 528 529 530 531
    def init_data(self):
        self.op_type = 'elementwise_sub'
        X = paddle.static.data(name='X', shape=[5, 6], dtype='int32')
        Y = paddle.static.data(name='Y', shape=[6], dtype='int32')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
532 533 534
        self.attrs = {
            'dim': 0,
        }
535 536 537

        self.orig2prim_args = (
            X,
538 539
            Y,
        )
540 541 542 543 544
        self.all_ops = ['elementwise_sub', 'broadcast_p', 'sub_p']
        self.out_map = {0: self.output['Out']}


class TestScaleOrig2Prim(TestElementWiseAddOrig2Prim):
545

546 547 548 549
    def init_data(self):
        self.op_type = 'scale'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

550 551 552
        self.input = {
            'X': X,
        }
553 554 555 556 557 558 559 560
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'scale': 2.0, 'bias': 1.0, 'bias_after_scale': True}

        self.orig2prim_args = (
            None,
561 562
            X,
        )
563 564 565 566 567 568 569
        self.all_ops = [
            'scale', 'fill_constant_p', 'fill_constant_p', 'mul_p', 'add_p'
        ]
        self.out_map = {0: self.output['Out']}


class TestAssignOrig2Prim(TestElementWiseAddOrig2Prim):
570

571 572 573 574
    def init_data(self):
        self.op_type = 'assign'
        X = paddle.static.data(name='X', shape=[10, 7], dtype='int32')

575 576 577
        self.input = {
            'X': X,
        }
578 579 580 581 582 583 584 585 586 587 588
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, )
        self.all_ops = ['assign', 'fill_constant_p', 'add_p']
        self.out_map = {0: self.output['Out']}


589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
class TestWhereOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'where'
        Cond = paddle.static.data(name='Condition', shape=[5, 6], dtype='bool')
        X = paddle.static.data(name='X', shape=[5, 6], dtype='float32')
        Y = paddle.static.data(name='Y', shape=[5, 6], dtype='float32')

        self.input = {'Condition': Cond, 'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.orig2prim_args = (Cond, X, Y)
        self.all_ops = ['where', 'select_p']
        self.out_map = {0: self.output['Out']}


class TestEqualOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['equal', 'eq_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
class TestNeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'not_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['not_equal', 'ne_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGtOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_than'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_than', 'gt_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'greater_equal'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype='bool')
        }
        self.attrs = {}
        self.orig2prim_args = (X, Y)
        self.all_ops = ['greater_equal', 'ge_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
class TestPowOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_pow', 'pow_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
class TestMaxOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'elementwise_max'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')
        Y = paddle.static.data(name='Y', shape=[5, 8], dtype='float')

        self.input = {'X': X, 'Y': Y}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}

        self.orig2prim_args = (X, Y)
        self.all_ops = ['elementwise_max', 'max_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
class TestGeluOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'gelu', 'add_p', 'erf_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'mul_p', 'mul_p', 'mul_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestGeluApproximateOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'gelu'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'approximate': True}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'add_p', 'add_p', 'fill_constant_p', 'fill_constant_p',
            'fill_constant_p', 'fill_constant_p', 'fill_constant_p', 'gelu',
            'mul_p', 'mul_p', 'mul_p', 'mul_p', 'pow_p', 'tanh_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
class TestReduceSumOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_sum'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = ['reduce_sum', 'reduce_sum_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestReduceMeanOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'reduce_mean'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'axis': [0, 1], 'keep_dim': False}

        self.orig2prim_args = (X, )
        self.all_ops = [
            'reduce_mean', 'reduce_sum_p', 'fill_constant_p', 'div_p'
        ]
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestSizeOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'size'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'Input': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(
                dtype=paddle.int64)
        }
        self.attrs = {}
        self.orig2prim_args = (X, )
        self.all_ops = ['size', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestCastOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'cast'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'in_dtype': X.dtype, 'out_dtype': paddle.float64}
        self.orig2prim_args = (X, )
        self.all_ops = ['cast', 'cast_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestPowScalarOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'pow'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {'factor': 2.}
        self.orig2prim_args = (None, X)
        self.all_ops = ['pow', 'pow_p', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


class TestSquareOrig2Prim(TestElementWiseAddOrig2Prim):

    def init_data(self):
        self.op_type = 'square'
        X = paddle.static.data(name='X', shape=[5, 8], dtype='float')

        self.input = {'X': X}
        self.output = {
            'Out':
            self.layer_help.create_variable_for_type_inference(dtype=X.dtype)
        }
        self.attrs = {}
        self.orig2prim_args = (X, )
        self.all_ops = ['square', 'pow_p', 'fill_constant_p']
        # { prim_op_output_index: orig_op_output_var }
        self.out_map = {0: self.output['Out']}


882 883
if __name__ == '__main__':
    unittest.main()