communicator.cc 41.3 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/distributed/communicator.h"
Q
Qiao Longfei 已提交
16
#include <gflags/gflags.h>
17
#include <paddle/fluid/framework/program_desc.h>
Q
Qiao Longfei 已提交
18
#include <chrono>  // NOLINT
19
#include <map>
Q
Qiao Longfei 已提交
20
#include <thread>  // NOLINT
21
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/fluid/framework/eigen.h"
Q
Qiao Longfei 已提交
23 24
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor_util.h"
25
#include "paddle/fluid/framework/threadpool.h"
Q
Qiao Longfei 已提交
26
#include "paddle/fluid/framework/variable_helper.h"
C
Chengmo 已提交
27
#include "paddle/fluid/operators/distributed/distributed.h"
Q
Qiao Longfei 已提交
28 29 30
#include "paddle/fluid/operators/distributed/parameter_recv.h"
#include "paddle/fluid/operators/distributed/parameter_send.h"

31 32 33
DECLARE_int32(communicator_max_merge_var_num);
DECLARE_int32(communicator_send_queue_size);

Q
Qiao Longfei 已提交
34 35
DEFINE_bool(communicator_independent_recv_thread, true,
            "use an independent to recv vars from parameter server");
36
DEFINE_int32(communicator_min_send_grad_num_before_recv, 20,
37
             "max grad num to send before recv parameters");
38
DEFINE_int32(communicator_thread_pool_size, 5, "thread num to do send or recv");
Q
Qiao Longfei 已提交
39 40 41
DEFINE_int32(communicator_send_wait_times, 5,
             "times that send thread will wait if merge num does not reach "
             "max_merge_var_num");
42 43
DEFINE_bool(communicator_fake_rpc, false,
            "fake mode does not really send any thing");
44 45
DEFINE_bool(communicator_merge_sparse_grad, true,
            "merge sparse gradient before sending");
46 47
DEFINE_int32(communicator_merge_sparse_bucket, 2000,
             "number of threads for sparse var");
Q
Qiao Longfei 已提交
48

Q
Qiao Longfei 已提交
49 50 51 52
namespace paddle {
namespace operators {
namespace distributed {

Q
Qiao Longfei 已提交
53 54 55 56 57 58
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

59 60 61 62 63 64 65
template <typename T>
inline void VSUB(int n, const T *x, const T *y, T *z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] - y[i];
  }
}

T
tangwei12 已提交
66
std::once_flag Communicator::init_flag_;
67
std::shared_ptr<Communicator> Communicator::communicator_(nullptr);
Q
can run  
Qiao Longfei 已提交
68

T
tangwei12 已提交
69 70 71 72 73 74 75
void AsyncCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                 const RpcCtxMap &recv_varname_to_ctx,
                                 Scope *recv_scope) {
  send_varname_to_ctx_ = std::move(send_varname_to_ctx);
  recv_varname_to_ctx_ = std::move(recv_varname_to_ctx);
  recv_scope_ = std::move(recv_scope);

Q
Qiao Longfei 已提交
76 77 78 79 80
  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
81 82
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
Q
Qiao Longfei 已提交
83 84
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
85 86
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
Q
Qiao Longfei 已提交
87
  VLOG(0) << "communicator_max_merge_var_num: "
88 89
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
90 91
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
92 93
  VLOG(0) << "communicator_is_sgd_optimizer: "
          << FLAGS_communicator_is_sgd_optimizer;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

  if (send_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be send, will not start send_thread";
  } else {
    send_scope_.reset(new Scope());
    for (auto &iter : send_varname_to_ctx_) {
      send_varname_to_queue_[iter.first] =
          std::make_shared<BlockingQueue<std::shared_ptr<Variable>>>(
              FLAGS_communicator_send_queue_size);
    }
    send_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  }

  if (recv_varname_to_ctx.size() == 0) {
    VLOG(0) << "nothing need to be received, will not start recv_thread";
  } else {
    recv_threadpool_.reset(
        new ::ThreadPool(FLAGS_communicator_thread_pool_size));
Q
Qiao Longfei 已提交
113 114 115
  }
}

T
tangwei12 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
void AsyncCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                 Scope *param_scope) {
  using RpcCtxMap = operators::distributed::RpcCtxMap;
  VLOG(3) << "ProcessGraph";
  RpcCtxMap send_varname_to_ctx;
  RpcCtxMap recv_varname_to_ctx;
  for (auto *op : program.Block(0).AllOps()) {
    VLOG(3) << "node name " << op->Type();
    if (op->Type() == "send") {
      auto send_var_name = op->Input("X")[0];
      auto send_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("send_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto height_section =
          boost::get<std::vector<int64_t>>(op->GetNullableAttr("sections"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
1
123malin 已提交
133 134 135 136 137 138
      auto merge_add = boost::get<bool>(op->GetNullableAttr("merge_add"));
      if (!merge_add) {
        merge_add = FLAGS_communicator_is_sgd_optimizer;
      }
      auto use_send_handler =
          boost::get<bool>(op->GetNullableAttr("use_send_handler"));
T
tangwei12 已提交
139
      send_varname_to_ctx[send_var_name] = operators::distributed::RpcContext(
1
123malin 已提交
140 141
          send_var_name, send_varnames, epmap, height_section, trainer_id,
          merge_add, use_send_handler);
T
tangwei12 已提交
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
      VLOG(3) << "find and init an send op: "
              << send_varname_to_ctx[send_var_name];
    } else if (op->Type() == "recv") {
      auto do_not_run = boost::get<int>(op->GetNullableAttr("do_not_run"));
      PADDLE_ENFORCE_GT(do_not_run, 0, "recv should not run!");
      auto recv_var_name = op->Output("Out")[0];
      auto recv_varnames = boost::get<std::vector<std::string>>(
          op->GetNullableAttr("recv_varnames"));
      auto epmap =
          boost::get<std::vector<std::string>>(op->GetNullableAttr("epmap"));
      auto trainer_id = boost::get<int>(op->GetNullableAttr("trainer_id"));
      recv_varname_to_ctx[recv_var_name] = operators::distributed::RpcContext(
          recv_var_name, recv_varnames, epmap, {}, trainer_id);
    }
  }

  // init communicator here
  if (send_varname_to_ctx.size() == 0 && recv_varname_to_ctx.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  operators::distributed::AsyncCommunicator::InitImpl(
      send_varname_to_ctx, recv_varname_to_ctx, param_scope);
}

AsyncCommunicator::~AsyncCommunicator() {
168 169 170 171
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
172 173 174
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (recv_thread_) recv_thread_->join();
175 176 177 178
  if (FLAGS_v >= 3) {
    std::string msg("~Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
Q
Qiao Longfei 已提交
179 180
}

T
tangwei12 已提交
181
void AsyncCommunicator::SendThread() {
Q
Qiao Longfei 已提交
182
  VLOG(3) << "SendThread start!";
Q
Qiao Longfei 已提交
183 184 185
  while (running_) {
    std::vector<std::future<void>> task_futures;
    task_futures.reserve(send_varname_to_ctx_.size());
186
    VLOG(4) << "run send graph";
Q
Qiao Longfei 已提交
187
    auto before_run_send_graph = GetCurrentUS();
Q
Qiao Longfei 已提交
188
    for (auto &iter : send_varname_to_queue_) {
Q
Qiao Longfei 已提交
189 190
      auto &var_name = iter.first;
      auto &var_queue = iter.second;
Q
Qiao Longfei 已提交
191
      if (var_queue->Size() > 0) {
Q
Qiao Longfei 已提交
192
        auto send_task = [this, &var_name, &var_queue] {
193
          VLOG(4) << var_name << " merge and send";
Q
Qiao Longfei 已提交
194
          std::vector<std::shared_ptr<Variable>> vars;
195 196
          int merged_var_num = 0;
          int wait_times = 0;
Q
Qiao Longfei 已提交
197 198
          while (merged_var_num < FLAGS_communicator_max_merge_var_num) {
            if (var_queue->Size() == 0) {
199
              VLOG(4) << "wait_times -> " << wait_times;
Q
Qiao Longfei 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
              if (wait_times >= FLAGS_communicator_send_wait_times) {
                break;
              }
              std::this_thread::sleep_for(std::chrono::milliseconds(10));
              wait_times++;
              continue;
            } else {
              wait_times = 0;

              vars.push_back(var_queue->Pop());
              // only count the send number of the first var
              if (var_name == send_varname_to_queue_.begin()->first) {
                grad_num_.fetch_add(1, std::memory_order_relaxed);
              }
              merged_var_num++;
215
            }
Q
Qiao Longfei 已提交
216
          }
Q
Qiao Longfei 已提交
217
          auto before_merge = GetCurrentUS();
1
123malin 已提交
218 219 220 221 222 223 224
          auto &ctx = send_varname_to_ctx_.at(var_name);
          if (ctx.use_send_handler) {
            MergeVars<float>(var_name, vars, send_scope_.get(), ctx.merge_add);
          } else {
            MergeVars<int64_t>(var_name, vars, send_scope_.get(),
                               ctx.merge_add);
          }
Q
Qiao Longfei 已提交
225
          auto after_merge = GetCurrentUS();
226
          VLOG(4) << "merge " << merged_var_num << " " << var_name
Q
Qiao Longfei 已提交
227
                  << " use time " << after_merge - before_merge;
Q
Qiao Longfei 已提交
228
          auto send_functor = distributed::ParameterSend<float>();
229
          if (!FLAGS_communicator_fake_rpc) {
230
            send_functor(ctx, *send_scope_, true, 1);
231
          }
Q
Qiao Longfei 已提交
232
          auto after_send = GetCurrentUS();
233
          VLOG(4) << "send " << var_name << " use time "
Q
Qiao Longfei 已提交
234
                  << after_send - after_merge;
Q
Qiao Longfei 已提交
235 236 237
        };
        task_futures.emplace_back(
            send_threadpool_->enqueue(std::move(send_task)));
Q
Qiao Longfei 已提交
238
      } else {
239
        VLOG(4) << var_name << " queue empty";
Q
Qiao Longfei 已提交
240
      }
Q
Qiao Longfei 已提交
241 242 243
    }
    for (auto &task_f : task_futures) {
      task_f.wait();
Q
Qiao Longfei 已提交
244
    }
Q
Qiao Longfei 已提交
245
    auto after_run_send_graph = GetCurrentUS();
246

247
    VLOG(4) << "run send graph use time "
248
            << after_run_send_graph - before_run_send_graph;
T
tangwei12 已提交
249
    Recv();
Q
Qiao Longfei 已提交
250
  }
251
  VLOG(0) << "communicator stopped, send thread exit";
Q
Qiao Longfei 已提交
252 253
}

T
tangwei12 已提交
254
void AsyncCommunicator::RecvThread() {
Q
Qiao Longfei 已提交
255
  VLOG(3) << "RecvThread start!";
Q
Qiao Longfei 已提交
256
  while (running_) {
257
    int grad_num = grad_num_.load();
258
    if (grad_num > FLAGS_communicator_min_send_grad_num_before_recv) {
259 260 261 262 263 264
      VLOG(1) << "current grad num " << grad_num;
      RecvAll();
      grad_num_.store(0);
    } else {
      std::this_thread::sleep_for(std::chrono::milliseconds(10));
    }
Q
Qiao Longfei 已提交
265
  }
266
  VLOG(0) << "communicator stopped, recv thread exit";
Q
Qiao Longfei 已提交
267 268
}

T
tangwei12 已提交
269 270
void AsyncCommunicator::Send(const std::string &var_name,
                             const framework::Scope &scope) {
Q
Qiao Longfei 已提交
271 272 273 274
  VLOG(3) << "communicator send " << var_name;
  // push var into send queue by var_name
  auto *grad_var = scope.FindVar(var_name);
  PADDLE_ENFORCE(grad_var->IsInitialized(), "grad var should be inited");
275 276 277 278 279
  if (grad_var->IsType<framework::SelectedRows>() &&
      !FLAGS_communicator_merge_sparse_grad) {
    auto send_functor = distributed::ParameterSend<float>();
    auto &ctx = send_varname_to_ctx_.at(var_name);
    if (!FLAGS_communicator_fake_rpc) {
280
      send_functor(ctx, scope, true, 1);
281 282 283 284 285 286 287 288
    }
  } else {
    auto tmp_grad_var = std::make_shared<Variable>();
    framework::CopyVariable(*grad_var, tmp_grad_var.get());
    auto &queue = send_varname_to_queue_.at(var_name);
    VLOG(3) << "send " << var_name << " queue size " << queue->Size();
    queue->Push(tmp_grad_var);
  }
Q
Qiao Longfei 已提交
289 290
}

T
tangwei12 已提交
291 292 293
void AsyncCommunicator::Recv() {
  if (FLAGS_communicator_independent_recv_thread) {
    return;
294 295
  }

T
tangwei12 已提交
296 297 298 299 300 301
  auto grad_num = grad_num_.load();
  if (grad_num > 0) {
    RecvAll();
    grad_num_.store(0);
  } else {
    std::this_thread::sleep_for(std::chrono::milliseconds(10));
302 303 304
  }
}

T
tangwei12 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
void AsyncCommunicator::RecvAll() {
  VLOG(3) << "parallel run recv graph";
  if (!running_) return;
  auto before_send = GetCurrentUS();
  std::vector<std::future<void>> task_futures;
  task_futures.reserve(recv_varname_to_ctx_.size());
  for (auto &iter : recv_varname_to_ctx_) {
    auto recv_task = [this, &iter] {
      auto &var_name = iter.first;
      VLOG(4) << "recv var " << var_name;
      auto recv_functor = distributed::ParameterRecv<float>();
      if (!FLAGS_communicator_fake_rpc) {
        recv_functor(iter.second, *recv_scope_);
      }
    };
    task_futures.emplace_back(recv_threadpool_->enqueue(std::move(recv_task)));
  }
  for (auto &task : task_futures) {
    task.wait();
  }
  auto after_recv = GetCurrentUS();
326
  VLOG(3) << "run recv graph use time " << after_recv - before_send;
327 328
}

T
tangwei12 已提交
329
void AsyncCommunicator::Start() {
330 331 332 333 334 335 336 337
  VLOG(0) << "Communicator start";
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    VLOG(1) << "start send thread and recv thread";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
T
tangwei12 已提交
338
        new std::thread(std::bind(&AsyncCommunicator::SendThread, this)));
339 340
    if (FLAGS_communicator_independent_recv_thread) {
      recv_thread_.reset(
T
tangwei12 已提交
341
          new std::thread(std::bind(&AsyncCommunicator::RecvThread, this)));
342 343 344 345
    }
  }
}

T
tangwei12 已提交
346
void AsyncCommunicator::Stop() {
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  VLOG(0) << "Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
    if (recv_thread_) {
      VLOG(1) << "stop recv thread";
      recv_thread_->join();
      recv_thread_.reset(nullptr);
    }
Q
Qiao Longfei 已提交
362
  }
363
  VLOG(0) << "Communicator stop done";
Q
Qiao Longfei 已提交
364 365
}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
void AsyncCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                             const std::vector<std::string> &sparse_var_tables,
                             const framework::Scope &scope) {}

void AsyncCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *param_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {}

GeoSgdCommunicator::~GeoSgdCommunicator() {
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
  running_ = false;
  if (send_thread_) send_thread_->join();
  if (FLAGS_v >= 3) {
    std::string msg("~Geo Sgd Communicator done");
    fwrite(msg.c_str(), msg.length(), 1, stdout);
  }
}

void GeoSgdCommunicator::InitImpl(
    const paddle::framework::ProgramDesc &program, Scope *training_scope,
    std::map<std::string, std::map<std::string, std::vector<std::string>>>
        &vars_info,
    const int &trainers, const int &geo_need_push_nums) {
  training_scope_ = std::move(training_scope);
  trainer_nums_ = std::move(trainers);
  geo_need_push_nums_ = std::move(geo_need_push_nums);

  // get all send information from graph, build vars_to_send
  VLOG(0) << "communicator_independent_recv_thread: "
          << FLAGS_communicator_independent_recv_thread;
  VLOG(0) << "communicator_send_queue_size: "
          << FLAGS_communicator_send_queue_size;
  VLOG(0) << "communicator_min_send_grad_num_before_recv: "
          << FLAGS_communicator_min_send_grad_num_before_recv;
  VLOG(0) << "communicator_thread_pool_size: "
          << FLAGS_communicator_thread_pool_size;
  VLOG(0) << "communicator_send_wait_times: "
          << FLAGS_communicator_send_wait_times;
  VLOG(0) << "communicator_max_merge_var_num: "
          << FLAGS_communicator_max_merge_var_num;
  VLOG(0) << "communicator_fake_rpc: " << FLAGS_communicator_fake_rpc;
  VLOG(0) << "communicator_merge_sparse_grad: "
          << FLAGS_communicator_merge_sparse_grad;
  VLOG(0) << "Trainer nums: " << trainer_nums_;
  VLOG(0) << "geo_sgd_push_before_local_train_nums: " << geo_need_push_nums_;
  VLOG(0) << "communicator_merge_sparse_bucket "
          << FLAGS_communicator_merge_sparse_bucket;

  // process var info from transpiler
  for (auto &iter : vars_info) {
    // change var name in delta scope: "var" -> "var.delta"
    std::string var_name = iter.first;
    std::string send_var_name = VarToDeltaVar(var_name);
    std::vector<std::string> vars_names = iter.second["var_names"];
    std::vector<std::string> send_var_names;
    for (auto origin_var_name : vars_names) {
      send_var_names.push_back(VarToDeltaVar(origin_var_name));
    }

    // get vars section for split
    std::vector<std::string> vars_sections_str = iter.second["sections"];
    std::vector<int64_t> vars_sections_int = {};
    for (std::string str : vars_sections_str) {
      int64_t str2i = std::stol(str.c_str());
      vars_sections_int.push_back(str2i);
    }

    std::vector<std::string> vars_epmap = iter.second["epmap"];

    // record var is sparse or not
    bool is_sparse = iter.second["is_sparse"].front() == std::string("True");
    var_list_[var_name] = is_sparse;

    send_varname_to_ctx_[send_var_name] = operators::distributed::RpcContext(
        send_var_name, send_var_names, vars_epmap, vars_sections_int, 0);
    recv_varname_to_ctx_[var_name] = operators::distributed::RpcContext(
        var_name, vars_names, vars_epmap, vars_sections_int, 0);
C
Chengmo 已提交
448

449 450 451 452 453 454
    absolute_section_[var_name] = operators::ToAbsoluteSection(
        send_varname_to_ctx_[send_var_name].height_sections);

    vars_first_dimension_[var_name] = 0;
    for (int64_t section : vars_sections_int) {
      vars_first_dimension_[var_name] += section;
C
Chengmo 已提交
455
    }
456 457

    send_var_nums_ += vars_names.size();
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
  }

  if (send_varname_to_ctx_.size() == 0 && recv_varname_to_ctx_.size() == 0) {
    LOG(WARNING) << "no var need to send and recv!!";
  }

  send_threadpool_.reset(new ::ThreadPool(FLAGS_communicator_thread_pool_size));
  need_push_queue_ =
      std::make_shared<BlockingQueue<std::shared_ptr<SparseIdsMap>>>(
          geo_need_push_nums);
  delta_scope_.reset(new Scope());
  old_scope_.reset(new Scope());
  pserver_scope_.reset(new Scope());
}

void GeoSgdCommunicator::Start() {
  VLOG(0) << "Geo Sgd Communicator start";
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    VLOG(0) << "start send thread ";
    running_ = true;
    // start send and recv thread
    send_thread_.reset(
        new std::thread(std::bind(&GeoSgdCommunicator::SendThread, this)));
  }
}

void GeoSgdCommunicator::Stop() {
  VLOG(0) << "Geo Sgd Communicator stop";
  running_ = false;
  if (!communicator_) {
    VLOG(0) << "Geo Sgd Communicator is not inited, do nothing";
  } else {
    if (send_thread_) {
      VLOG(1) << "stop send thread";
      send_thread_->join();
      send_thread_.reset(nullptr);
    }
  }
  VLOG(0) << "Geo Sgd Communicator stop done";
}

void GeoSgdCommunicator::Send(const std::string &var_name,
                              const framework::Scope &scope) {
  // when execute trainer startup program, recv parameter from pserver
  // training_scope & pserver_scope param will copy it
  if (var_name == "param_init") {
    for (auto &iter : var_list_) {
      // For sparse param, old_scope store LoDTensor,
      // pserver_scope store SelectedRows.
      auto local_var_name = iter.first;
      if (var_list_[local_var_name] == true) {
        GeoSgdSparseParamInit(training_scope_, pserver_scope_.get(),
                              local_var_name);
      } else {
        GeoSgdDenseParamInit(training_scope_, pserver_scope_.get(),
                             local_var_name);
      }
      GeoSgdDenseParamInit(training_scope_, old_scope_.get(), local_var_name);
    }
  }
}

void GeoSgdCommunicator::Send(const std::vector<std::string> &sparse_var_names,
                              const std::vector<std::string> &sparse_var_tables,
                              const framework::Scope &scope) {
  // SparseIdsMap = std::unordered_map<std::string,std::unordered_set<int64_t>>
  std::shared_ptr<SparseIdsMap> ids_table = std::make_shared<SparseIdsMap>();
C
Chengmo 已提交
527
  auto before_run_send = GetCurrentUS();
528 529 530
  for (size_t i = 0; i < sparse_var_tables.size(); i++) {
    if (ids_table->find(sparse_var_tables[i]) == ids_table->end()) {
      // create empty set for new sparse var
C
Chengmo 已提交
531 532 533 534 535 536
      auto splited_var_nums =
          recv_varname_to_ctx_[sparse_var_tables[i]].splited_var_names.size();
      ids_table->insert(
          std::pair<std::string, std::vector<std::unordered_set<int64_t>>>(
              sparse_var_tables[i],
              std::vector<std::unordered_set<int64_t>>{splited_var_nums}));
537 538 539 540 541 542
    }
    auto *var = scope.FindVar(sparse_var_names[i]);
    auto var_tensor = var->Get<framework::LoDTensor>();
    int element_number = var_tensor.numel();
    int *var_mutable_data = var_tensor.mutable_data<int>(var_tensor.place());
    // insert ids which has not been record
543
    for (int j = 0; j < element_number; j++) {
C
Chengmo 已提交
544 545 546
      auto ep_idx = GetSectionIndex(var_mutable_data[j],
                                    absolute_section_[sparse_var_tables[i]]);
      ids_table->at(sparse_var_tables[i])[ep_idx].insert(var_mutable_data[j]);
547 548 549 550 551
      VLOG(4) << "Sparse var " << sparse_var_tables[i] << " insert "
              << var_mutable_data[j];
    }
  }
  need_push_queue_->Push(ids_table);
C
Chengmo 已提交
552
  auto after_run_send = GetCurrentUS();
553
  VLOG(4) << "run send_op use time " << after_run_send - before_run_send;
554 555 556 557 558 559 560 561
}

void GeoSgdCommunicator::SendThread() {
  VLOG(0) << "SendThread start!";
  auto before_run_training = GetCurrentUS();

  while (running_) {
    std::vector<std::future<void>> task_futures;
562
    task_futures.reserve(send_var_nums_);
563

564
    int wait_times = 0;
C
Chengmo 已提交
565
    while (ids_send_vec_.size() < geo_need_push_nums_) {
566 567
      VLOG(4) << "ids_send_vec_ Size: " << ids_send_vec_.size();
      if (need_push_queue_->Size() > 0) {
C
Chengmo 已提交
568
        wait_times = 0;
569 570
        ids_send_vec_.push_back(*(need_push_queue_->Pop()));
        VLOG(4) << "ids_send_vec_ pushed";
C
Chengmo 已提交
571
      } else if (need_push_queue_->Size() == 0) {
572
        VLOG(4) << "wait_times -> " << wait_times;
C
Chengmo 已提交
573 574 575 576 577 578
        if (wait_times >= FLAGS_communicator_send_wait_times) {
          break;
        }
        std::this_thread::sleep_for(std::chrono::milliseconds(10));
        wait_times++;
        continue;
579 580 581 582 583
      }
    }

    if (ids_send_vec_.size() >= geo_need_push_nums_) {
      auto after_run_training = GetCurrentUS();
584
      VLOG(4) << "run Training use time "
585 586
              << after_run_training - before_run_training;
      before_run_training = GetCurrentUS();
587
      VLOG(4) << "Start send after get need_push_num";
588 589 590

      for (auto &iter : send_varname_to_ctx_) {
        auto &var_name = iter.first;
C
Chengmo 已提交
591 592 593 594 595
        if (var_list_[DeltaVarToVar(var_name)] == true) {
          // sparse var: merge->send->recv
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
596
              VLOG(4) << "ids_send_vec_ size: " << ids_send_vec_.size();
C
Chengmo 已提交
597 598 599 600 601
              auto ids_set =
                  SparseIdsMerge(ids_send_vec_, var_name, splited_var_name);
              SendUpdateSparseVars(var_name, splited_var_name, ids_set);
              RecvUpdateSparseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
602
              VLOG(3) << "run GEO-SGD var " << splited_var_name << " use time "
C
Chengmo 已提交
603 604 605 606
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
607
          }
C
Chengmo 已提交
608
        } else {
609 610 611 612 613 614 615 616 617 618 619 620
          for (auto &splited_var_name : iter.second.splited_var_names) {
            auto send_task = [this, &var_name, &splited_var_name] {
              auto before_run_geo = GetCurrentUS();
              SendUpdateDenseVars(var_name, splited_var_name);
              RecvUpdateDenseVars(var_name, splited_var_name);
              auto after_run_geo = GetCurrentUS();
              VLOG(3) << "run GEO-SGD var " << splited_var_name << " use time "
                      << after_run_geo - before_run_geo;
            };
            task_futures.emplace_back(
                send_threadpool_->enqueue(std::move(send_task)));
          }
C
Chengmo 已提交
621
        }
622
      }
C
Chengmo 已提交
623 624 625 626
      for (auto &task_f : task_futures) {
        task_f.wait();
      }
      ids_send_vec_.clear();
627 628 629 630 631
    }
  }
}

std::unordered_set<int64_t> GeoSgdCommunicator::SparseIdsMerge(
C
Chengmo 已提交
632 633
    const std::vector<SparseIdsMap> &ids_send_vec, const std::string &var_name,
    const std::string &splited_var_name) {
634
  // every batch has some sparse id, merge them into one unoredered_set
635
  VLOG(4) << "Sparse Ids merge var: " << var_name
C
Chengmo 已提交
636
          << " splited var: " << splited_var_name;
637
  auto before_run_ids_merge_ = GetCurrentUS();
C
Chengmo 已提交
638 639
  auto origin_var_name = DeltaVarToVar(var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
640 641
  std::unordered_set<int64_t> ids_set;
  for (auto ids_map : ids_send_vec) {
C
Chengmo 已提交
642
    for (auto id : ids_map[origin_var_name][splited_var_index]) {
643 644 645 646
      ids_set.insert(id);
    }
  }
  auto after_run_ids_merge_ = GetCurrentUS();
647
  VLOG(4) << "run SparseIdsMerge " << splited_var_name << " has nums "
C
Chengmo 已提交
648
          << ids_set.size() << " use time "
649 650 651 652
          << after_run_ids_merge_ - before_run_ids_merge_;
  return ids_set;
}

653 654
void GeoSgdCommunicator::SendUpdateDenseVars(
    const std::string &var_name, const std::string &splited_var_name) {
655 656
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
C
Chengmo 已提交
657 658
  // var_name: param.delta
  auto origin_var_name = DeltaVarToVar(var_name);
659 660 661 662
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  VLOG(4) << "Dense var: " << var_name
          << " 's splited var: " << splited_var_name
          << " splited var index: " << splited_var_index;
663
  auto before_run_send_dense = GetCurrentUS();
664
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
665

C
Chengmo 已提交
666
  auto *var_x = training_scope_->FindVar(origin_var_name);
667 668
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

C
Chengmo 已提交
669
  auto *var_y = old_scope_->FindVar(origin_var_name);
670 671 672
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
  auto total_element = var_x_tensor.numel();
  int64_t section = 0;
  int64_t begin_loc = 0;
  int64_t dimension = 0;

  size_t out_num = send_varname_to_ctx_[var_name].height_sections.size();
  if (out_num > 1) {
    section = send_varname_to_ctx_[var_name].height_sections[splited_var_index];
    dims[0] = section;
    begin_loc = absolute_section_[origin_var_name][splited_var_index];
    dimension = total_element / vars_first_dimension_[origin_var_name];
    total_element = section * dimension;
    VLOG(4) << "Dense splited var: " << splited_var_name
            << " section: " << section << " dimension: " << dimension
            << " begin loc: " << begin_loc << " total_element "
            << total_element;
  }
690

691 692 693 694 695 696 697 698 699 700
  auto *var_x_data = var_x_tensor.mutable_data<float>(var_x_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];
  auto *var_y_data = var_y_tensor.mutable_data<float>(var_y_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];
701 702

  // create delta var in delta scope
703 704 705 706 707
  auto *var_z_tensor =
      delta_scope_->Var(splited_var_name)->GetMutable<framework::LoDTensor>();
  var_z_tensor->Resize(dims);
  var_z_tensor->mutable_data<float>(dims, cpu_ctx.GetPlace());
  auto *var_z_data = var_z_tensor->mutable_data<float>(cpu_ctx.GetPlace());
708

709 710 711
  VLOG(4) << "Dense splited var: " << splited_var_name << "var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];
712 713 714

  // calc sub = var_training - var_old
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
715 716 717 718
  blas.VSUB(total_element, var_x_data, var_y_data, var_z_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];
719 720 721

  // calc var_delta = sub / trainer_nums
  float trainer_param = 1.0 / static_cast<float>(trainer_nums_);
722
  blas.SCAL(total_element, trainer_param, var_z_data);
723 724

  // calc var_old += var_delta
725 726 727 728
  blas.VADD(total_element, var_y_data, var_z_data, var_y_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];
729 730

  auto after_run_send_dense = GetCurrentUS();
731
  VLOG(4) << "run send update dense var " << var_name << " use time "
732
          << after_run_send_dense - before_run_send_dense;
C
Chengmo 已提交
733 734

  auto before_send_dense = GetCurrentUS();
735 736 737 738
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_dense = GetCurrentUS();
  VLOG(4) << "send " << splited_var_name << " use time "
          << after_send_dense - before_send_dense;
739 740 741
}

void GeoSgdCommunicator::SendUpdateSparseVars(
C
Chengmo 已提交
742 743
    const std::string &var_name, const std::string &splited_var_name,
    const std::unordered_set<int64_t> &ids_table) {
744 745
  // calc var_delata = (var_training - var_old)/trainer_nums
  // calc var_old += var_delta
C
Chengmo 已提交
746 747
  // var_name: param.delta, splited_var_name: param.block0.delta
  // origin_var_name: param
748 749 750
  auto before_run_send_sparse = GetCurrentUS();

  auto ids_num = ids_table.size();
C
Chengmo 已提交
751 752 753 754
  VLOG(4) << "Sparse Ids nums is : " << ids_num;
  auto origin_var_name = DeltaVarToVar(var_name);

  auto *var_x = training_scope_->FindVar(origin_var_name);
755 756
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

C
Chengmo 已提交
757
  auto *var_y = old_scope_.get()->FindVar(origin_var_name);
758 759 760 761 762 763 764 765
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

  auto dims = var_x_tensor.dims();
  auto row_numel = dims[1];

  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

C
Chengmo 已提交
766
  auto *var_z = delta_scope_->Var(splited_var_name);
767 768 769 770 771 772 773
  auto *var_z_select_rows = var_z->GetMutable<framework::SelectedRows>();
  auto *var_z_value = var_z_select_rows->mutable_value();
  var_z_value->Resize({static_cast<int64_t>(ids_num), row_numel});
  auto *z_value = var_z_value->mutable_data<float>(var_x_tensor.place());

  std::vector<int64_t> new_rows;
  new_rows.insert(new_rows.begin(), ids_table.begin(), ids_table.end());
C
Chengmo 已提交
774 775 776 777

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
  float avg = 1 / static_cast<float>(trainer_nums_);
778
  for (size_t y = 0; y < new_rows.size(); y++) {
C
Chengmo 已提交
779 780 781 782 783 784 785
    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

    std::vector<float> row_delta(row_numel, 0);
786
    blas.VSUB(row_numel, x_val, y_val, row_delta.data());
C
Chengmo 已提交
787 788 789
    blas.SCAL(row_numel, avg, row_delta.data());
    blas.VADD(row_numel, row_delta.data(), y_val, y_val);
    blas.VCOPY(row_numel, row_delta.data(), z_val);
790
  }
C
Chengmo 已提交
791

792
  auto after_run_send_sparse = GetCurrentUS();
793
  VLOG(4) << "run send update sparse var " << splited_var_name << " use time "
794
          << after_run_send_sparse - before_run_send_sparse;
C
Chengmo 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809

  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  std::vector<int64_t> send_rows;
  send_rows.reserve(new_rows.size());
  for (auto idx : new_rows) {
    send_rows.push_back(idx -
                        absolute_section_[origin_var_name][splited_var_index]);
  }
  var_z_select_rows->set_rows(send_rows);
  var_z_select_rows->set_height(
      send_varname_to_ctx_[var_name].height_sections[splited_var_index]);

  auto before_send_sparse = GetCurrentUS();
  RpcSend(var_name, splited_var_name, splited_var_index);
  auto after_send_sparse = GetCurrentUS();
810
  VLOG(4) << "send " << splited_var_name << " has nums " << new_rows.size()
C
Chengmo 已提交
811
          << " use time " << after_send_sparse - before_send_sparse;
812 813
}

814 815
void GeoSgdCommunicator::RecvUpdateDenseVars(
    const std::string &var_name, const std::string &splited_var_name) {
816 817
  // calc var_training += var_pserver - var_old
  // calc var_old = var_pserver
C
Chengmo 已提交
818 819 820 821
  // var_name: param.delta

  // step1: recv dense var from pserver
  auto origin_var_name = DeltaVarToVar(var_name);
822 823 824
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto cpu_ctx = paddle::platform::CPUDeviceContext();
C
Chengmo 已提交
825 826

  auto before_run_recv = GetCurrentUS();
827 828 829 830
  VLOG(4) << "Dense recv origin_var_name: " << origin_var_name
          << " origin_splited_var_name: " << origin_splited_var_name
          << " splited_var_index: " << splited_var_index;
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
C
Chengmo 已提交
831
  auto after_run_recv = GetCurrentUS();
832
  VLOG(4) << "recv var " << origin_splited_var_name << " use time "
C
Chengmo 已提交
833 834 835 836 837 838 839 840 841 842
          << after_run_recv - before_run_recv;

  // step2: update dense var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();

  auto *var_y = old_scope_->FindVar(origin_var_name);
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();

843
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
C
Chengmo 已提交
844
  auto var_z_tensor = var_z->Get<framework::LoDTensor>();
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
  auto dims = var_z_tensor.dims();
  auto total_element = var_z_tensor.numel();

  int64_t section = 0;
  int64_t begin_loc = 0;
  int64_t dimension = 0;
  size_t out_num = recv_varname_to_ctx_[origin_var_name].height_sections.size();
  if (out_num > 1) {
    section = dims[0];
    begin_loc = absolute_section_[origin_var_name][splited_var_index];
    dimension = total_element / section;
    VLOG(4) << "Dense splited var: " << splited_var_name
            << " section: " << section << " dimension: " << dimension
            << " begin loc: " << begin_loc << " total_element "
            << total_element;
  }

  auto *var_x_data = var_x_tensor.mutable_data<float>(var_x_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];

  auto *var_y_data = var_y_tensor.mutable_data<float>(var_y_tensor.place()) +
                     begin_loc * dimension;
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];

  auto *var_z_data = var_z_tensor.mutable_data<float>(cpu_ctx.GetPlace());
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_z_data[0] "
          << var_z_data[0] << " var_z_data[end] "
          << var_z_data[total_element - 1];

  auto *var_y_sub_tensor = old_scope_->Var(origin_splited_var_name)
                               ->GetMutable<framework::LoDTensor>();
  var_y_sub_tensor->Resize(dims);
  var_y_sub_tensor->mutable_data<float>(dims, cpu_ctx.GetPlace());
  auto *var_y_sub_data =
      var_y_sub_tensor->mutable_data<float>(cpu_ctx.GetPlace());

  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_sub_data[0] "
          << var_y_sub_data[0] << " var_y_sub_data[end] "
          << var_y_sub_data[total_element - 1];
C
Chengmo 已提交
889 890

  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
891

C
Chengmo 已提交
892
  // calc sub = pserver - old
893 894 895 896 897 898 899 900 901 902 903
  blas.VSUB(total_element, var_z_data, var_y_data, var_y_sub_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_sub_data[0] "
          << var_y_sub_data[0] << " var_y_sub_data[end] "
          << var_y_sub_data[total_element - 1];

  // calc train += sub
  blas.VADD(total_element, var_x_data, var_y_sub_data, var_x_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_x_data[0] "
          << var_x_data[0] << " var_x_data[end] "
          << var_x_data[total_element - 1];

C
Chengmo 已提交
904
  // calc old = pserver
905 906 907 908 909
  blas.VCOPY(total_element, var_z_data, var_y_data);
  VLOG(4) << "Dense splited var: " << splited_var_name << " var_y_data[0] "
          << var_y_data[0] << " var_y_data[end] "
          << var_y_data[total_element - 1];

C
Chengmo 已提交
910
  auto after_run_update = GetCurrentUS();
911
  VLOG(4) << "dense var update " << origin_splited_var_name << " use time "
C
Chengmo 已提交
912 913 914 915 916 917 918 919 920 921
          << after_run_update - before_run_update;
}

void GeoSgdCommunicator::RecvUpdateSparseVars(
    const std::string &var_name, const std::string &splited_var_name) {
  // step 1: recv splited var from pserver
  auto splited_var_index = GetSplitedVarIndex(var_name, splited_var_name);
  auto origin_var_name = DeltaVarToVar(var_name);
  auto origin_splited_var_name = DeltaVarToVar(splited_var_name);

922
  auto before_run_recv = GetCurrentUS();
C
Chengmo 已提交
923 924
  RpcRecv(origin_var_name, origin_splited_var_name, splited_var_index);
  auto after_run_recv = GetCurrentUS();
925
  VLOG(4) << "recv var " << origin_splited_var_name << " use time "
C
Chengmo 已提交
926
          << after_run_recv - before_run_recv;
927

C
Chengmo 已提交
928 929 930
  // step 2: update sparse var
  auto before_run_update = GetCurrentUS();
  auto *var_x = training_scope_->FindVar(origin_var_name);
931
  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
C
Chengmo 已提交
932
  auto dims = var_x_tensor.dims();
933 934
  float *x_value = var_x_tensor.mutable_data<float>(var_x_tensor.place());

C
Chengmo 已提交
935
  auto *var_y = old_scope_->FindVar(origin_var_name);
936 937 938
  auto var_y_tensor = var_y->Get<framework::LoDTensor>();
  float *y_value = var_y_tensor.mutable_data<float>(var_y_tensor.place());

C
Chengmo 已提交
939 940 941 942 943 944 945 946 947 948
  auto *var_z = pserver_scope_.get()->FindVar(origin_splited_var_name);
  auto var_z_slr = var_z->GetMutable<framework::SelectedRows>();
  auto row_size = var_z_slr->rows().size();

  std::vector<int64_t> new_rows;
  new_rows.reserve(row_size);

  for (auto ids : var_z_slr->rows()) {
    new_rows.push_back(ids +
                       absolute_section_[origin_var_name][splited_var_index]);
949 950
  }

C
Chengmo 已提交
951 952 953 954 955 956
  auto *new_value = var_z_slr->mutable_value();
  auto row_numel = dims[1];
  auto *z_value = new_value->mutable_data<float>(var_x_tensor.place());

  auto cpu_ctx = paddle::platform::CPUDeviceContext();
  auto blas = math::GetBlas<paddle::platform::CPUDeviceContext, float>(cpu_ctx);
957
  for (size_t y = 0; y < new_rows.size(); y++) {
C
Chengmo 已提交
958 959 960 961 962 963 964 965
    std::vector<float> row_delta(row_numel, 0);

    auto ids = new_rows[y];

    float *x_val = x_value + ids * row_numel;
    float *y_val = y_value + ids * row_numel;
    float *z_val = z_value + y * row_numel;

966
    blas.VSUB(row_numel, z_val, y_val, row_delta.data());
C
Chengmo 已提交
967 968 969 970 971
    blas.VADD(row_numel, row_delta.data(), x_val, x_val);
    blas.VCOPY(row_numel, z_val, y_val);
  }

  auto after_run_update = GetCurrentUS();
972
  VLOG(4) << "sparse var recv update " << origin_splited_var_name << " has num "
C
Chengmo 已提交
973 974
          << new_rows.size() << " use time "
          << after_run_update - before_run_update;
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

void GeoSgdCommunicator::GeoSgdSparseParamInit(framework::Scope *scope_x,
                                               framework::Scope *scope_y,
                                               const std::string var_name) {
  // create selectedrows var from lodtensor var info
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);

  auto var_x_tensor = var_x->Get<framework::LoDTensor>();
  auto *var_y_select_rows = var_y->GetMutable<framework::SelectedRows>();

  auto dims = var_x_tensor.dims();
  auto rows = dims[0];
  auto row_numel = dims[1];

  var_y_select_rows->set_height(rows);
  std::vector<int64_t> new_rows{};
  var_y_select_rows->set_rows(new_rows);
  auto *var_y_value = var_y_select_rows->mutable_value();
  var_y_value->Resize({rows, row_numel});
  var_y_value->mutable_data<float>(var_x_tensor.place());
}

void GeoSgdCommunicator::GeoSgdDenseParamInit(framework::Scope *scope_x,
                                              framework::Scope *scope_y,
                                              const std::string var_name) {
  auto *var_x = scope_x->Var(var_name);
  auto *var_y = scope_y->Var(var_name);
  framework::CopyVariable(*var_x, var_y);
}

C
Chengmo 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
void GeoSgdCommunicator::RpcSend(const std::string &origin_var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto trainer_id = send_varname_to_ctx_[origin_var_name].trainer_id;
  auto endpoint =
      send_varname_to_ctx_[origin_var_name].epmap[splited_var_index];

  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_send = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(trainer_id);
1018 1019 1020
  auto handle = rpc_client->AsyncSendVar(endpoint, cpu_ctx_send,
                                         *delta_scope_.get(), splited_var_name);
  handle->Wait();
C
Chengmo 已提交
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
}

void GeoSgdCommunicator::RpcRecv(const std::string &var_name,
                                 const std::string &splited_var_name,
                                 const size_t &splited_var_index) {
  auto train_id = recv_varname_to_ctx_[var_name].trainer_id;
  auto endpoint = recv_varname_to_ctx_[var_name].epmap[splited_var_index];
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto &cpu_ctx_recv = *pool.Get(platform::CPUPlace());
  distributed::RPCClient *rpc_client =
      distributed::RPCClient::GetInstance<RPCCLIENT_T>(train_id);
  pserver_scope_->Var(splited_var_name);
1033 1034 1035 1036
  auto handle = rpc_client->AsyncGetVar(endpoint, cpu_ctx_recv,
                                        *pserver_scope_.get(), splited_var_name,
                                        splited_var_name, splited_var_name);
  handle->Wait();
C
Chengmo 已提交
1037 1038 1039 1040
}

void GeoSgdCommunicator::Recv() {}

1041 1042 1043 1044 1045 1046 1047
void GeoSgdCommunicator::InitImpl(const RpcCtxMap &send_varname_to_ctx,
                                  const RpcCtxMap &recv_varname_to_ctx,
                                  Scope *recv_scope) {}

void GeoSgdCommunicator::InitImpl(const paddle::framework::ProgramDesc &program,
                                  Scope *recv_scope) {}

Q
Qiao Longfei 已提交
1048 1049 1050
}  // namespace distributed
}  // namespace operators
}  // namespace paddle