layer_norm_op.cu 15.9 KB
Newer Older
S
sneaxiy 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

S
sneaxiy 已提交
15
#include <cub/cub.cuh>
Y
Yi Wang 已提交
16
#include "paddle/fluid/operators/layer_norm_op.h"
C
chengduoZH 已提交
17

S
sneaxiy 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
namespace paddle {
namespace operators {

inline static int GetDesiredBlockDim(int block_dim) {
  const int kMaxBlockDim = 512;
  return block_dim >= kMaxBlockDim
             ? kMaxBlockDim
             : (1 << (static_cast<int>(std::log2f(block_dim))));
}

#define FIXED_BLOCK_DIM_CASE_BASE(log2_block_dim, ...)  \
  case (1 << (log2_block_dim)): {                       \
    constexpr auto kBlockDim = (1 << (log2_block_dim)); \
    __VA_ARGS__;                                        \
  } break

#define FIXED_BLOCK_DIM_CASE(...)              \
  FIXED_BLOCK_DIM_CASE_BASE(9, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(8, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(7, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(6, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(5, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(4, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(3, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(2, ##__VA_ARGS__); \
  FIXED_BLOCK_DIM_CASE_BASE(1, ##__VA_ARGS__)

template <typename T, int BlockDim>
__global__ void LayerNormForward(const T *x, const T *scale, const T *bias,
                                 T *y, T *mean, T *var, float epsilon,
                                 int feature_size) {
  using BlockReduce = cub::BlockReduce<T, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = blockIdx.x * feature_size + threadIdx.x;
  int end_idx = (blockIdx.x + 1) * feature_size;

  // Step 1: Reduce to calculate mean
  T mean_val = static_cast<T>(0);
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    mean_val += x[beg_idx];
  }
  mean_val = BlockReduce(temp_storage).Reduce(mean_val, cub::Sum());
  if (threadIdx.x == 0) mean[blockIdx.x] = mean_val / feature_size;
  __syncthreads();
  mean_val = mean[blockIdx.x];

  // Step 2: Reduce to calculate var
  T var_val = static_cast<T>(0);
  for (int i = beg_idx; i < end_idx; i += BlockDim) {
    T tmp = x[i] - mean_val;
    var_val += (tmp * tmp);
  }
  var_val = BlockReduce(temp_storage).Reduce(var_val, cub::Sum());
  if (threadIdx.x == 0) {
    var[blockIdx.x] = var_val / feature_size;
  }
  __syncthreads();
  var_val = static_cast<T>(sqrt(var[blockIdx.x] + epsilon));

  // Step 3: Calculate y
  if (scale != nullptr) {
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = scale[j] * (x[i] - mean_val) / var_val;
      }
    }
  } else {  // scale == nullptr
    if (bias != nullptr) {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val + bias[j];
      }
    } else {
      for (int i = beg_idx, j = threadIdx.x; i < end_idx;
           i += BlockDim, j += BlockDim) {
        y[i] = (x[i] - mean_val) / var_val;
      }
    }
  }
}

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
  __device__ __forceinline__ Pair(const T &first, const T &second)
      : first_(first), second_(second) {}

  T first_;
  T second_;
};

template <typename T>
struct PairAddFunctor {
  __device__ __forceinline__ Pair<T> operator()(const Pair<T> &p1,
                                                const Pair<T> &p2) {
    return Pair<T>(p1.first_ + p2.first_, p1.second_ + p2.second_);
  }
};

// Make sure that d_scale != nullptr && d_bias != nullptr
// Since d_scale != nullptr, scale would not be nullptr
template <typename T, int BlockDim, bool HasDx>
__global__ void LayerNormBackwardGradientAll(const T *x, const T *d_y,
                                             T *d_scale, T *d_bias, T *d_x,
                                             const T *mean, const T *var,
                                             const T *scale, float epsilon,
                                             int batch_size, int feature_size) {
  using BlockReduce = cub::BlockReduce<Pair<T>, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;

  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
  T d_scale_partial = 0, d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val = static_cast<T>(sqrt(var[row_idx] + epsilon));
    d_scale_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    d_bias_partial += d_y[i];
    if (HasDx) d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
  }

  auto pair = BlockReduce(temp_storage)
                  .Reduce(Pair<T>(d_scale_partial, d_bias_partial),
                          PairAddFunctor<T>());

  if (threadIdx.x == 0) {
    d_scale[blockIdx.x] = pair.first_;
    d_bias[blockIdx.x] = pair.second_;
  }
}

// Make sure that there is only one true expression: d_scale != nullptr
// or d_bias != nullptr
// Notice: scale may be nullptr
template <typename T, int BlockDim, bool HasDx, bool HasDScale>
__global__ void LayerNormBackwardGradientScaleOrBias(
    const T *x, const T *d_y, T *d_scale, T *d_bias, T *d_x, const T *mean,
    const T *var, const T *scale, float epsilon, int batch_size,
    int feature_size) {
  using BlockReduce = cub::BlockReduce<T, BlockDim>;
  __shared__ typename BlockReduce::TempStorage temp_storage;
  int beg_idx = threadIdx.x * feature_size + blockIdx.x;
  int end_idx = batch_size * feature_size + blockIdx.x;
  int stride = BlockDim * feature_size;
  T d_scale_or_d_bias_partial = 0;

  for (int i = beg_idx; i < end_idx; i += stride) {
    int row_idx = i / feature_size;
    auto var_val = static_cast<T>(sqrt(var[row_idx] + epsilon));
    if (HasDScale) {
      d_scale_or_d_bias_partial += d_y[i] * (x[i] - mean[row_idx]) / var_val;
    } else {  // d_bias != nullptr
      d_scale_or_d_bias_partial += d_y[i];
    }

    if (HasDx) {
      if (scale != nullptr)
        d_x[i] = d_y[i] * scale[blockIdx.x] / var_val;
      else
        d_x[i] = d_y[i] / var_val;
    }
  }

  d_scale_or_d_bias_partial =
      BlockReduce(temp_storage).Reduce(d_scale_or_d_bias_partial, cub::Sum());

  if (threadIdx.x == 0) {
    if (HasDScale) {
      d_scale[blockIdx.x] = d_scale_or_d_bias_partial;
    } else {
      d_bias[blockIdx.x] = d_scale_or_d_bias_partial;
    }
  }
}

// Here, we only calculate d_x
template <typename T>
__global__ void LayerNormBackwardGradientOnlyX(const T *d_y, T *d_x,
                                               const T *var, const T *scale,
                                               float epsilon, int batch_size,
                                               int feature_size) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < batch_size * feature_size) {
    int row_idx = idx / feature_size;
    auto var_val = static_cast<T>(sqrt(var[row_idx] + epsilon));
    if (scale != nullptr) {
      int col_idx = idx % feature_size;
      d_x[idx] = d_y[idx] * scale[col_idx] / var_val;
    } else {
      d_x[idx] = d_y[idx] / var_val;
    }
  }
}

template <typename T>
__global__ void LayerNormBackwardWhenBatchSizeIsOne(
    const T *x, const T *d_y, T *d_x, T *d_scale, T *d_bias, const T *mean,
    const T *var, const T *scale, float epsilon, int feature_size) {
  int idx = threadIdx.x + blockIdx.x * blockDim.x;
  if (idx < feature_size) {
    auto var_val = static_cast<T>(sqrt(var[idx] + epsilon));
    if (d_x != nullptr) {
      if (d_scale == nullptr)
        d_x[idx] = d_y[idx] / var_val;
      else
        d_x[idx] = d_y[idx] * scale[idx] / var_val;
    }
    if (d_scale != nullptr)
      d_scale[idx] = d_y[idx] * (x[idx] - mean[idx]) / var_val;
    if (d_bias != nullptr) d_bias[idx] = d_y[idx];
  }
}

template <typename T>
static void LayerNormBackward(const T *x, const T *d_y, const T *scale,
                              const T *mean, const T *var, T *d_x, T *d_scale,
                              T *d_bias, float epsilon, int batch_size,
                              int feature_size, cudaStream_t stream) {
  const int kMaxBlockDim = 512;
  int gradient_flag = (static_cast<int>(d_x != nullptr) << 2) |
                      (static_cast<int>(d_scale != nullptr) << 1) |
                      (static_cast<int>(d_bias != nullptr));
  if (gradient_flag == 0) return;

  if (batch_size == 1) {
    LayerNormBackwardWhenBatchSizeIsOne<
        T><<<(feature_size + kMaxBlockDim - 1) / kMaxBlockDim, kMaxBlockDim, 0,
             stream>>>(x, d_y, d_x, d_scale, d_bias, mean, var, scale, epsilon,
                       feature_size);
    return;
  }

  auto block_dim = GetDesiredBlockDim(batch_size);
  switch (gradient_flag) {
    case 1:  // d_x == nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 2:  // d_x == nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, false,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 3:  // d_x == nullptr, d_scale != nulptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, false><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
      break;
    case 4:  // d_x != nullptr, d_scale == nullptr, d_bias == nullptr
      LayerNormBackwardGradientOnlyX<
          T><<<(batch_size * feature_size + kMaxBlockDim - 1) / kMaxBlockDim,
               kMaxBlockDim, 0, stream>>>(d_y, d_x, var, scale, epsilon,
                                          batch_size, feature_size);
      break;
    case 5:  // d_x != nulptr, d_scale == nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             false><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 6:  // d_x != nullptr, d_scale != nullptr, d_bias == nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(LayerNormBackwardGradientScaleOrBias<
                             T, kBlockDim, true,
                             true><<<feature_size, kBlockDim, 0, stream>>>(
            x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon, batch_size,
            feature_size));
      }
      break;
    case 7:  // d_x != nullptr, d_scale != nullptr, d_bias != nullptr
      switch (block_dim) {
        FIXED_BLOCK_DIM_CASE(
            LayerNormBackwardGradientAll<
                T, kBlockDim, true><<<feature_size, kBlockDim, 0, stream>>>(
                x, d_y, d_scale, d_bias, d_x, mean, var, scale, epsilon,
                batch_size, feature_size));
      }
      break;
    default:
      break;
  }
}

template <typename T>
class LayerNormKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *bias = ctx.Input<Tensor>("Bias");
    auto *x = ctx.Input<Tensor>("X");

    auto *y = ctx.Output<Tensor>("Y");
    auto *mean = ctx.Output<Tensor>("Mean");
    auto *var = ctx.Output<Tensor>("Variance");
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    const auto x_dims = x->dims();
    auto *x_data = x->data<T>();
    auto *y_data = y->mutable_data<T>(ctx.GetPlace());
    auto *mean_data = mean->mutable_data<T>(ctx.GetPlace());
    auto *var_data = var->mutable_data<T>(ctx.GetPlace());
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *bias_data = (bias == nullptr ? nullptr : bias->data<T>());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    switch (GetDesiredBlockDim(feature_size)) {
      FIXED_BLOCK_DIM_CASE(
          LayerNormForward<T, kBlockDim><<<batch_size, kBlockDim, 0, stream>>>(
              x_data, scale_data, bias_data, y_data, mean_data, var_data,
              epsilon, feature_size));
      default:
        PADDLE_THROW(
            "Product from begin_norm_axis to end must be larger than 1");
        break;
    }
  }
};

template <typename T>
class LayerNormGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    const float epsilon = ctx.Attr<float>("epsilon");
    // d_x, d_scale, d_bias may be nullptr
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    auto *x = ctx.Input<Tensor>("X");
    auto *mean = ctx.Input<Tensor>("Mean");
    auto *var = ctx.Input<Tensor>("Variance");
    auto *scale = ctx.Input<Tensor>("Scale");
    auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));

    auto *x_data = x->data<T>();
    auto *d_y_data = d_y->data<T>();
    auto *mean_data = mean->data<T>();
    auto *var_data = var->data<T>();
    auto *scale_data = (scale == nullptr ? nullptr : scale->data<T>());
    auto *d_scale_data =
        (d_scale == nullptr ? nullptr
                            : d_scale->mutable_data<T>(ctx.GetPlace()));
    auto *d_bias_data =
        (d_bias == nullptr ? nullptr : d_bias->mutable_data<T>(ctx.GetPlace()));
    auto *d_x_data =
        (d_x == nullptr ? nullptr : d_x->mutable_data<T>(ctx.GetPlace()));

    const auto &x_dims = x->dims();
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int batch_size = static_cast<int>(matrix_dim[0]);
    int feature_size = static_cast<int>(matrix_dim[1]);

    auto stream = ctx.cuda_device_context().stream();

    LayerNormBackward<T>(x_data, d_y_data, scale_data, mean_data, var_data,
                         d_x_data, d_scale_data, d_bias_data, epsilon,
                         batch_size, feature_size, stream);
  }
};

#undef FIXED_BLOCK_DIM_CASE_BASE
#undef FIXED_BLOCK_DIM_CASE
}  // namespace operators
}  // namespace paddle

C
chengduoZH 已提交
417 418 419
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
    layer_norm,
C
chengduoZH 已提交
420 421
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormKernel<paddle::platform::CUDADeviceContext, double>);
C
chengduoZH 已提交
422 423
REGISTER_OP_CUDA_KERNEL(
    layer_norm_grad,
C
chengduoZH 已提交
424 425
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::LayerNormGradKernel<paddle::platform::CUDADeviceContext, double>);