diagonal_op.cc 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/diagonal_op.h"

namespace paddle {
namespace operators {

class DiagonalOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "diagonal");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "diagonal");

    int offset_ = ctx->Attrs().Get<int>("offset");
    int axis1 = ctx->Attrs().Get<int>("axis1");
    int axis2 = ctx->Attrs().Get<int>("axis2");

    auto x_dims = ctx->GetInputDim("Input");
    int axis1_ = axis1 < 0 ? x_dims.size() + axis1 : axis1;
    int axis2_ = axis2 < 0 ? x_dims.size() + axis2 : axis2;

    PADDLE_ENFORCE_GE(
        x_dims.size(), 2,
        platform::errors::OutOfRange("Input's dim is out of range (expected at "
                                     "least 2 dimensions, but got %ld).",
                                     x_dims.size()));
    PADDLE_ENFORCE_LT(
        axis1_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(axis1) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), axis1));
    PADDLE_ENFORCE_LT(
        axis2_, x_dims.size(),
        platform::errors::OutOfRange(
            "Attr(axis2) is out of range (expected to be in range of [%ld, "
            "%ld], but got %ld).",
            -(x_dims.size()), (x_dims.size() - 1), axis2));
    PADDLE_ENFORCE_NE(axis1_, axis2_,
                      platform::errors::InvalidArgument(
                          "The dimensions should not be identical "
                          "%d vs %d.",
                          axis1, axis2));

    auto out_dims = vectorize(x_dims);
    // from out_dims get the dim size of axis1_.
    auto axis1_size = out_dims[axis1_];
    auto axis2_size = out_dims[axis2_];
    // delete two dims by attr axis1 and axis2 from out_dims.
    /* example:
       out_dim = [2, 3, 4];
       axis1 = 0;
       axis2 = 1;
       according to the attr of axis1 and axis2, we get:
       out_dim = [4].
    */
    out_dims.erase(out_dims.begin() + std::max(axis1_, axis2_));
    out_dims.erase(out_dims.begin() + std::min(axis1_, axis2_));

    if (offset_ == 0) {
      out_dims.push_back(std::min(axis1_size, axis2_size));
    } else if (offset_ > 0) {
      if ((axis2_size - offset_) > 0) {
        out_dims.push_back(std::min(axis1_size, axis2_size - offset_));
      } else {
        out_dims.push_back(0);
      }
    } else {
      if ((axis1_size + offset_) > 0) {
        out_dims.push_back(std::min(axis1_size + offset_, axis2_size));
      } else {
        out_dims.push_back(0);
      }
    }
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
  }
};

class DiagonalOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("Input",
             "(Tensor) The input tensor, from which the diagonals are taken.");
    AddOutput(
        "Out",
        "(Tensor) The partial view of input with the its diagonal elements.");
    AddAttr<int>(
        "offset",
        R"DOC((int, default 0), offset of the diagonal from the main diagonal. Can be both positive and negative. Default: 0.
        )DOC")
        .SetDefault(0);
    AddAttr<int>(
        "axis1",
        R"DOC((int, default 0), the first axis of the 2-D planes from which the diagonals should be taken. 
        Can be either positive or negative. Default: 0.
        )DOC")
        .SetDefault(0);
    AddAttr<int>(
        "axis2",
        R"DOC((int, default 1), the second axis of the 2-D planes from which the diagonals should be taken. 
        Can be either positive or negative. Default: 1.
        )DOC")
        .SetDefault(1);
    AddComment(R"DOC(
Diagonal Operator.
Return a partial view of input with the its diagonal elements of the input tensor.
The behavior of this operator is similar to how `numpy.diagonal` works.

)DOC");
  }
};

class DiagonalGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "DiagonalGrad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("Input")), "Output",
                   framework::GradVarName("Input"), "DiagonalGrad");

    ctx->SetOutputDim(framework::GradVarName("Input"),
                      ctx->GetInputDim("Input"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class DiagonalGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("diagonal_grad");
    grad_op->SetInput("Input", this->Input("Input"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("Input"),
                       this->InputGrad("Input"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(DiagonalGradNoNeedBufferVarsInferer,
                                    "Input");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(diagonal, ops::DiagonalOp, ops::DiagonalOpMaker,
                  ops::DiagonalGradOpMaker<paddle::framework::OpDesc>,
                  ops::DiagonalGradOpMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(diagonal_grad, ops::DiagonalGradOp,
                  ops::DiagonalGradNoNeedBufferVarsInferer)

REGISTER_OP_CPU_KERNEL(diagonal, ops::DiagonalKernel<int>,
                       ops::DiagonalKernel<int64_t>, ops::DiagonalKernel<float>,
                       ops::DiagonalKernel<double>, ops::DiagonalKernel<bool>);

REGISTER_OP_CPU_KERNEL(diagonal_grad, ops::DiagonalGradKernel<int>,
                       ops::DiagonalGradKernel<int64_t>,
                       ops::DiagonalGradKernel<float>,
                       ops::DiagonalGradKernel<double>);