paddle_pass_builder.cc 8.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/paddle_pass_builder.h"
16 17 18
#ifdef PADDLE_WITH_CUDA
#include <cudnn.h>
#endif
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
#include <glog/logging.h>

namespace paddle {

void PaddlePassBuilder::AppendPass(const std::string &pass_type) {
  passes_.push_back(pass_type);
}

void PaddlePassBuilder::TurnOnDebug() {
  std::vector<std::string> passes;
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it != "graph_viz_pass") {
      it = passes_.insert(it + 1, "graph_viz_pass");
    } else {
      ++it;
    }
  }
}

std::string PaddlePassBuilder::DebugString() {
  std::stringstream ss;
  ss << "Passes to apply:\n";
  for (auto &pass : passes_) {
    ss << "  - " << pass << '\n';
  }
  return ss.str();
}

void PaddlePassBuilder::DeletePass(const std::string &pass_type) {
  auto it = std::begin(passes_);
  while (it != std::end(passes_)) {
    if (*it == pass_type) {
      it = passes_.erase(it);
    } else {
      ++it;
    }
  }
}

void PaddlePassBuilder::InsertPass(size_t idx, const std::string &pass_type) {
  passes_.insert(std::begin(passes_) + idx, pass_type);
}

void PaddlePassBuilder::DeletePass(size_t idx) {
  passes_.erase(std::begin(passes_) + idx);
}

W
Wojciech Uss 已提交
67 68
void PaddlePassBuilder::AppendAnalysisPass(const std::string &pass) {
  analysis_passes_.push_back(pass);
69 70
}

W
Wojciech Uss 已提交
71 72
void PaddlePassBuilder::ClearPasses() { passes_.clear(); }

73
const std::vector<std::string> kTRTSubgraphPasses({
74
  "conv_affine_channel_fuse_pass",                 //
75
      "conv_eltwiseadd_affine_channel_fuse_pass",  //
76
      "shuffle_channel_detect_pass",               //
77 78
      "quant_conv2d_dequant_fuse_pass",            //
      "delete_quant_dequant_op_pass",              //
P
Pei Yang 已提交
79 80 81 82 83 84 85
      // "fc_fuse_pass",                                 //
      "simplify_with_basic_ops_pass",  //
      "multihead_matmul_fuse_pass",    //
      "conv_bn_fuse_pass",             //
      "fc_fuse_pass",                  //
      "tensorrt_subgraph_pass",        //
      "conv_bn_fuse_pass",             //
86 87 88 89 90 91 92 93 94
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
      "conv_elementwise_add_act_fuse_pass",   //
      "conv_elementwise_add2_act_fuse_pass",  //
      "conv_elementwise_add_fuse_pass",       //
#endif                                        //
      "transpose_flatten_concat_fuse_pass",
});

95 96
// The following passes works for Anakin sub-graph engine.
const std::vector<std::string> kAnakinSubgraphPasses({
97
    "quant_conv2d_dequant_fuse_pass",               //
N
nhzlx 已提交
98 99 100 101 102
    "simplify_anakin_priorbox_detection_out_pass",  //
    "fillconstant_elementwisemul_fuse",             //
    "fc_fuse_pass",                                 //
    "conv_elementwise_add_fuse_pass",               //
    "fc_gru_fuse_pass",                             //
103 104 105
    "shuffle_channel_detect_pass",                  //
    "anakin_subgraph_pass",                         //
    "fc_gru_fuse_pass",                             //
106 107
});

石晓伟 已提交
108 109 110 111 112 113
const std::vector<std::string> kLiteSubgraphPasses({
#ifdef PADDLE_WITH_LITE
    "lite_subgraph_pass",
#endif
});

114 115
GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
  passes_.assign({
116
    //   "identity_scale_op_clean_pass",             //
117 118 119
    "is_test_pass",                                  //
        "simplify_with_basic_ops_pass",              //
        "conv_affine_channel_fuse_pass",             //
120 121
        "conv_eltwiseadd_affine_channel_fuse_pass",  //
        "conv_bn_fuse_pass",                         //
122
        "conv_eltwiseadd_bn_fuse_pass",              //
123 124 125
        "multihead_matmul_fuse_pass",
        "fc_fuse_pass",                        //
        "fc_elementwise_layernorm_fuse_pass",  //
126 127 128 129 130
#if CUDNN_VERSION >= 7100  // To run conv_fusion, the version of cudnn must be
                           // guaranteed at least v7
        "conv_elementwise_add_act_fuse_pass",   //
        "conv_elementwise_add2_act_fuse_pass",  //
        "conv_elementwise_add_fuse_pass",       //
N
nhzlx 已提交
131
#endif                                          //
石晓伟 已提交
132
        "transpose_flatten_concat_fuse_pass",   //
133
        // following pass should be located in the last, since it will
134 135
        // work on all fused ops.
        "runtime_context_cache_pass"
136 137 138 139 140
  });

  use_gpu_ = true;
}

141 142 143 144 145 146 147
void GpuPassStrategy::EnableCUDNN() {
  if (!use_cudnn_) {
    passes_.insert(passes_.begin(), "cudnn_placement_pass");
  }
  use_cudnn_ = true;
}

W
Wojciech Uss 已提交
148 149
void GpuPassStrategy::EnableMKLDNN() {
  LOG(ERROR) << "GPU not support MKLDNN yet";
150 151
}

W
Wojciech Uss 已提交
152 153
void GpuPassStrategy::EnableMkldnnQuantizer() {
  LOG(ERROR) << "GPU not support MKL-DNN quantization";
Y
Yan Chunwei 已提交
154 155
}

M
mozga-intel 已提交
156 157 158 159
void GpuPassStrategy::EnableNgraph() {
  LOG(ERROR) << "GPU not support Ngraph yet";
}

160 161 162
CpuPassStrategy::CpuPassStrategy() : PassStrategy({}) {
  // NOTE the large fusions should be located in the front, so that they will
  // not be damaged by smaller ones.
163 164
  passes_.assign({"simplify_with_basic_ops_pass",   //
                  "attention_lstm_fuse_pass",       //
165 166
                  "seqconv_eltadd_relu_fuse_pass",  //
                  // "seqpool_concat_fuse_pass",    //
167
                  "seqpool_cvm_concat_fuse_pass",  //
168
                  // "embedding_fc_lstm_fuse_pass", //
169 170 171 172 173 174 175 176 177 178 179 180 181
                  "fc_lstm_fuse_pass",                       //
                  "mul_lstm_fuse_pass",                      //
                  "fc_gru_fuse_pass",                        //
                  "mul_gru_fuse_pass",                       //
                  "seq_concat_fc_fuse_pass",                 //
                  "fc_fuse_pass",                            //
                  "repeated_fc_relu_fuse_pass",              //
                  "squared_mat_sub_fuse_pass",               //
                  "conv_bn_fuse_pass",                       //
                  "conv_eltwiseadd_bn_fuse_pass",            //
                  "conv_transpose_bn_fuse_pass",             //
                  "conv_transpose_eltwiseadd_bn_fuse_pass",  //
                  "is_test_pass",                            //
182 183
                  // following pass should be located in the last, since
                  // it will work on all fused ops.
184
                  "runtime_context_cache_pass"});
Y
Yan Chunwei 已提交
185

186 187
  use_gpu_ = false;
}
W
Wojciech Uss 已提交
188

189 190
void CpuPassStrategy::EnableCUDNN() { LOG(ERROR) << "CPU not support cuDNN"; }

W
Wojciech Uss 已提交
191 192 193 194 195 196
void CpuPassStrategy::EnableMKLDNN() {
// TODO(Superjomn) Consider the way to mix CPU with GPU.
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_) {
    passes_.insert(passes_.begin(), "mkldnn_placement_pass");

197 198 199 200
    for (auto &pass : std::vector<std::string>({
             "depthwise_conv_mkldnn_pass",    //
             "conv_bn_fuse_pass",             // Execute BN passes again to
             "conv_eltwiseadd_bn_fuse_pass",  // preserve correct pass order
201 202 203
             "conv_transpose_bn_fuse_pass",   //
             "conv_transpose_eltwiseadd_bn_fuse_pass",  //
             "conv_bias_mkldnn_fuse_pass",              //
204
             "conv_transpose_bias_mkldnn_fuse_pass",
205 206 207
             "conv3d_bias_mkldnn_fuse_pass",  //
             "conv_elementwise_add_mkldnn_fuse_pass",
             "conv_concat_relu_mkldnn_fuse_pass",
208 209 210
             "conv_relu_mkldnn_fuse_pass",        //
             "conv_leaky_relu_mkldnn_fuse_pass",  //
             "conv_relu6_mkldnn_fuse_pass",       //
211 212 213
             // Disabled due to topology-dependent speed-up
             // "fc_mkldnn_pass"
         })) {
W
Wojciech Uss 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
      passes_.push_back(pass);
    }
  }
  use_mkldnn_ = true;
#else
  use_mkldnn_ = false;
#endif
}

void CpuPassStrategy::EnableMkldnnQuantizer() {
#ifdef PADDLE_WITH_MKLDNN
  if (!use_mkldnn_quantizer_) {
    passes_.push_back("cpu_quantize_placement_pass");
  }
  use_mkldnn_quantizer_ = true;
#else
  use_mkldnn_quantizer_ = false;
#endif
}

M
mozga-intel 已提交
234 235 236 237 238 239 240 241 242 243
void CpuPassStrategy::EnableNgraph() {
#ifdef PADDLE_WITH_NGRAPH
  if (!use_ngraph_) {
    passes_.insert(passes_.begin(), "ngraph_subgraph_pass");
  }
  use_ngraph_ = true;
#else
  use_ngraph_ = false;
#endif
}
244
}  // namespace paddle