test_ConvTrans.cpp 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <vector>
#include <string>
#include "paddle/gserver/layers/DataLayer.h"
#include "ModelConfig.pb.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/utils/GlobalConstants.h"
#include "paddle/gserver/layers/ExpandConvTransLayer.h"
23
#include "paddle/math/MathUtils.h"
24 25 26 27 28 29 30 31 32 33 34 35 36

#include "TestUtil.h"
#include "LayerGradUtil.h"

using namespace paddle;  // NOLINT
using namespace std;     // NOLINT

P_DECLARE_bool(use_gpu);
P_DECLARE_int32(gpu_id);
P_DECLARE_double(checkgrad_eps);
P_DECLARE_bool(thread_local_rand_use_global_seed);
P_DECLARE_bool(prev_batch_state);

37
// Test that the convTrans forward is the same as conv backward
38
TEST(Layer, convTransLayerFwd) {
39
    // Setting up conv-trans layer
40 41 42 43 44 45 46
    TestConfig configt;
    configt.biasSize = 3;
    configt.layerConfig.set_type("exconvt");
    configt.layerConfig.set_num_filters(3);
    configt.layerConfig.set_partial_sum(1);
    configt.layerConfig.set_shared_biases(true);

47
    configt.inputDefs.push_back({INPUT_DATA, "layer_0", 1024, 384});
48 49 50
    LayerInputConfig* input = configt.layerConfig.add_inputs();
    ConvConfig* conv = input->mutable_conv_conf();
    conv->set_filter_size(2);
51
    conv->set_filter_size_y(4);
52 53 54 55 56 57 58 59
    conv->set_channels(16);
    conv->set_padding(0);
    conv->set_padding_y(1);
    conv->set_stride(2);
    conv->set_stride_y(2);
    conv->set_groups(1);
    conv->set_filter_channels(3 / conv->groups());
    conv->set_img_size(16);
60 61 62
    conv->set_output_x(outputSize(conv->img_size(), conv->filter_size(),
                                  conv->padding(), conv->stride(),
                                  /* caffeMode */ true));
63 64 65 66 67 68 69 70 71
    configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                                configt.layerConfig.num_filters());
    configt.layerConfig.set_name("convTrans");

    // data layer initialize
    std::vector<DataLayerPtr> dataLayers;
    LayerMap layerMap;
    vector<Argument> datas;
    initDataLayer(configt, &dataLayers, &datas, &layerMap, "convTrans",
72
                  100, false, false);
73 74 75 76 77 78 79
    // test layer initialize
    std::vector<ParameterPtr> parameters;
    LayerPtr convtLayer;
    initTestLayer(configt, &layerMap, &parameters, &convtLayer);
    convtLayer->getBiasParameter()->zeroMem();
    convtLayer->forward(PASS_GC);

80
    // Setting up conv-layer config
81 82 83 84 85 86 87
    TestConfig config;
    config.biasSize = 16;
    config.layerConfig.set_type("exconv");
    config.layerConfig.set_num_filters(16);
    config.layerConfig.set_partial_sum(1);
    config.layerConfig.set_shared_biases(true);

88
    config.inputDefs.push_back({INPUT_DATA, "layer_1", 768, 384});
89 90 91
    input = config.layerConfig.add_inputs();
    conv = input->mutable_conv_conf();
    conv->set_filter_size(2);
92
    conv->set_filter_size_y(4);
93 94 95 96 97 98 99 100
    conv->set_channels(3);
    conv->set_padding(0);
    conv->set_padding_y(1);
    conv->set_stride(2);
    conv->set_stride_y(2);
    conv->set_groups(1);
    conv->set_filter_channels(conv->channels() / conv->groups());
    conv->set_img_size(16);
101 102 103
    conv->set_output_x(outputSize(conv->img_size(), conv->filter_size(),
                                  conv->padding(), conv->stride(),
                                  /* caffeMode */ true));
104 105 106 107 108 109 110 111 112
    config.layerConfig.set_size(conv->output_x() * conv->output_x() *
                                config.layerConfig.num_filters());
    config.layerConfig.set_name("conv");

    // data layer initialize
    std::vector<DataLayerPtr> dataLayers2;
    LayerMap layerMap2;
    vector<Argument> datas2;
    initDataLayer(config, &dataLayers2, &datas2, &layerMap2, "conv",
113
                  100, false, false);
114 115 116 117 118
    // test layer initialize
    std::vector<ParameterPtr> parameters2;
    LayerPtr convLayer;
    initTestLayer(config, &layerMap2, &parameters2, &convLayer);

119
    // Sync convLayer and convtLayer parameter
120 121 122 123
    convLayer->getBiasParameter()->zeroMem();
    convLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->copyFrom(
            *(convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)));

124
    // Set convLayer outputGrad as convTransLayer input value
125 126 127 128 129 130 131
    convLayer->forward(PASS_GC);
    convLayer->getOutput().grad->copyFrom(*(dataLayers[0]->getOutputValue()));

    vector<int> callbackFlags(parameters2.size(), 0);
    auto callback = [&](Parameter* para) { ++callbackFlags[para->getID()]; };
    convLayer->backward(callback);

132
    // Check that the convLayer backward is the same as convTransLayer forward
133 134 135 136
    checkMatrixEqual(convtLayer->getOutputValue(),
                     dataLayers2[0]->getOutputGrad());
}

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

// Do one forward pass of convTrans layer and check to see if its output
// matches the given result
void doOneConvtTest(size_t imgSize, size_t output_x, size_t stride,
                    size_t padding, size_t filter_size, MatrixPtr& result) {
    TestConfig configt;
    configt.biasSize = 1;
    configt.layerConfig.set_type("exconvt");
    configt.layerConfig.set_num_filters(1);
    configt.layerConfig.set_partial_sum(1);
    configt.layerConfig.set_shared_biases(true);

    configt.inputDefs.push_back({INPUT_DATA, "layer_0", output_x * output_x,
                                 filter_size * filter_size});
    LayerInputConfig* input = configt.layerConfig.add_inputs();
    ConvConfig* conv = input->mutable_conv_conf();
    conv->set_filter_size(filter_size);
    conv->set_filter_size_y(filter_size);
    conv->set_channels(1);
    conv->set_padding(padding);
    conv->set_padding_y(padding);
    conv->set_stride(stride);
    conv->set_stride_y(stride);
    conv->set_groups(1);
    conv->set_filter_channels(1);
    conv->set_img_size(imgSize);
    conv->set_output_x(output_x);

    configt.layerConfig.set_size(conv->img_size() * conv->img_size() *
                                configt.layerConfig.num_filters());
    configt.layerConfig.set_name("convTrans");

    std::vector<DataLayerPtr> dataLayers;
    LayerMap layerMap;
    vector<Argument> datas;
    initDataLayer(configt, &dataLayers, &datas, &layerMap, "convTrans",
                  1, false, false);
    dataLayers[0]->getOutputValue()->zeroMem();
    dataLayers[0]->getOutputValue()->add(1.0);

    // test layer initialize
    std::vector<ParameterPtr> parameters;
    LayerPtr convtLayer;
    initTestLayer(configt, &layerMap, &parameters, &convtLayer);
    convtLayer->getBiasParameter()->zeroMem();
    convtLayer->getParameters()[0]->zeroMem();
    convtLayer->getParameters()[0]->getBuf(PARAMETER_VALUE)->add(1.0);
    convtLayer->forward(PASS_GC);

    checkMatrixEqual(convtLayer->getOutputValue(), result);
}

TEST(Layer, convTransLayerFwd2) {
    MatrixPtr result;
191
    result = Matrix::create(1, 5 * 5, false, false);
192 193
    result->zeroMem();
    result->add(1.0);
194 195 196 197 198 199
    doOneConvtTest(/* imgSize */ 5,
                   /* output_x */ 1,
                   /* stride */ 1,
                   /* padding */ 0,
                   /* filter_size */ 5,
                   result);
200 201 202 203 204 205

    float resultData[] = {1, 2, 2, 2, 1,
                          2, 4, 4, 4, 2,
                          2, 4, 4, 4, 2,
                          2, 4, 4, 4, 2,
                          1, 2, 2, 2, 1};
206 207 208 209 210 211 212 213
    result->setData(resultData);
    doOneConvtTest(/* imgSize */ 5,
                   /* output_x */ 2,
                   /* stride */ 1,
                   /* padding */ 0,
                   /* filter_size */ 4,
                   result);

214 215 216 217 218
    float resultData2[] = {1, 2, 2, 2, 1,
                           2, 4, 4, 4, 2,
                           2, 4, 4, 4, 2,
                           2, 4, 4, 4, 2,
                           1, 2, 2, 2, 1};
219 220 221 222 223 224 225 226
    result->setData(resultData2);
    doOneConvtTest(/* imgSize */ 5,
                   /* output_x */ 2,
                   /* stride */ 2,
                   /* padding */ 1,
                   /* filter_size */ 5,
                   result);

227 228 229 230 231
    float resultData3[] = {1, 1, 2, 1, 1,
                           1, 1, 2, 1, 1,
                           2, 2, 4, 2, 2,
                           1, 1, 2, 1, 1,
                           1, 1, 2, 1, 1};
232 233 234 235 236 237 238
    result->setData(resultData3);
    doOneConvtTest(/* imgSize */ 5,
                   /* output_x */ 2,
                   /* stride */ 2,
                   /* padding */ 0,
                   /* filter_size */ 3,
                   result);}
239

240 241 242 243 244 245 246
int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  FLAGS_thread_local_rand_use_global_seed = true;
  srand(1);
  return RUN_ALL_TESTS();
}