adadelta_op.cc 5.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/adadelta_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dzhwinter 已提交
20
using Tensor = framework::Tensor;
21

22 23 24 25
class AdadeltaOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext *ctx) const override {
27 28 29 30 31 32 33 34
    PADDLE_ENFORCE(ctx->HasInput("Param"),
                   "Input(Param) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Grad"),
                   "Input(Grad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredGrad"),
                   "Input(AvgSquaredGrad) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("AvgSquaredUpdate"),
                   "Input(AvgSquaredUpdate) of AdadeltaOp should not be null.");
35 36 37 38 39 40 41 42 43 44
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Param").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Param").front(), ctx->GetInputsVarType("Param").front());
    PADDLE_ENFORCE(
        ctx->GetInputsVarType("Grad").front() ==
            framework::proto::VarType::LOD_TENSOR,
        "The input var's type should be LoDTensor, but the received is %s",
        ctx->Inputs("Grad").front(), ctx->GetInputsVarType("Grad").front());
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

    PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
                   "Output(ParamOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredGradOut"),
        "Output(AvgSquaredGradOut) of AdadeltaOp should not be null.");
    PADDLE_ENFORCE(
        ctx->HasOutput("AvgSquaredUpdateOut"),
        "Output(AvgSquaredUpdateOut) of AdadeltaOp should not be null.");

    auto param_dim = ctx->GetInputDim("Param");
    PADDLE_ENFORCE_EQ(
        param_dim, ctx->GetInputDim("Grad"),
        "param and grad input of AdadeltaOp should have same dimension");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredGrad"),
                      "Param and AvgSquaredGrad input of AdadeltaOp "
                      "should have same dimension");
    PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("AvgSquaredUpdate"),
                      "Param and AvgSquaredUpdate input of AdadeltaOp "
                      "should have same dimension");

    ctx->SetOutputDim("ParamOut", param_dim);
    ctx->SetOutputDim("AvgSquaredGradOut", param_dim);
    ctx->SetOutputDim("AvgSquaredUpdateOut", param_dim);
  }
70

D
dzhwinter 已提交
71 72 73 74 75 76
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::ToDataType(ctx.Input<Tensor>("Param")->type());
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
77 78 79 80
};

class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
81
  void Make() override {
82 83
    AddInput("Param", "(Tensor) Input parameter");
    AddInput("Grad", "(Tensor) Input gradient");
84
    AddInput("AvgSquaredGrad", "(Tensor) Input average of squared gradient");
85
    AddInput("AvgSquaredUpdate",
86
             "(Tensor) Input average of squared parameter updates");
87 88 89

    AddOutput("ParamOut", "(Tensor) Output parameter");
    AddOutput("AvgSquaredGradOut",
90
              "(Tensor) Output average of squared gradient");
91
    AddOutput("AvgSquaredUpdateOut",
92
              "(Tensor) Output average of squared parameter updates");
93 94 95 96 97 98 99 100 101 102

    AddAttr<float>("rho",
                   "(float, default 0.95) Exponential decay rate "
                   "for squared gradients.")
        .SetDefault(0.95f);
    AddAttr<float>("epsilon",
                   "(float, default 1.0e-6) Constant for "
                   "numerical stability")
        .SetDefault(1.0e-6f);
    AddComment(R"DOC(
103
Adadelta Optimizer.
104

105 106 107 108
Adadelta optimizer is implemented as explained in:
https://arxiv.org/abs/1212.5701
Adadelta is a per-dimension adaptive learning rate method used
for gradient descent.
109

110
Adadelta updates are as follows:
111

112 113 114 115 116 117
$$
avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\
param\_update =  - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\
avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\
param\_out = param + param\_update
$$
118 119 120 121 122 123 124 125 126 127 128

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker);
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
129 130
    adadelta, ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::AdadeltaOpKernel<paddle::platform::CPUDeviceContext, double>);