engine.py 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import time
16 17 18 19 20
import copy
import logging
from collections import defaultdict

import paddle
21
import paddle.utils as utils
22

23
from paddle import fluid, static
24
from paddle.io import Dataset
25
from paddle.jit import to_static
26
from paddle.metric import Metric
27
from paddle.static import InputSpec
28
from paddle.fluid import core
29
from paddle.fluid import program_guard
30
from paddle.fluid.layers.utils import flatten
31
from paddle.fluid.executor import global_scope, _to_name_str
32
from paddle.fluid.backward import append_backward
33
from paddle.fluid.framework import Operator, Parameter, _non_static_mode
34 35
from paddle.fluid.framework import _current_expected_place as _get_device
from paddle.fluid.dygraph.parallel import ParallelEnv
36
from paddle.distributed import fleet
37
from paddle.distributed.passes import new_pass, PassContext
38

39
from .hepler import ProgramHelper
40 41
from ..collective import _get_global_env
from .cluster import Cluster, get_default_cluster
42 43
from .planner_v2 import Planner
from .parallelizer_v2 import Parallelizer
44 45 46 47 48
from .dist_op import DistributedOperator
from .dist_saver import DistributedSaver
from .dist_loader import NonIterableGeneratorLoader
from .utils import make_data_unshard, set_grad_var_shape
from .utils import print_program_with_dist_attr, to_list
49
from .process_group import new_process_group, get_all_process_groups, get_world_process_group
50
from .dist_context import DistributedContext, get_default_distributed_context
51 52 53


class Engine:
54

55 56 57 58 59
    def __init__(self,
                 model=None,
                 inputs_spec=None,
                 labels_spec=None,
                 cluster=None,
60 61
                 strategy=None,
                 user_tuning_config=None):
62
        self.model = model
63 64
        self.inputs_spec = self._validate_spec(inputs_spec)
        self.labels_spec = self._validate_spec(labels_spec)
65
        self.cluster = cluster
66 67
        if self.cluster is None:
            self.cluster = get_default_cluster()
68
        self.strategy = strategy
69 70
        if self.strategy is None:
            self.strategy = fleet.DistributedStrategy()
71
        self._user_tuning_config = user_tuning_config
72

73
        self._executor = None
74 75 76
        self._cur_rank = paddle.distributed.get_rank()
        self._nranks = paddle.distributed.get_world_size()
        self._saver = DistributedSaver()
77 78 79 80 81 82 83 84 85 86 87 88

        # TODO: add logger module
        self._logger = logging.getLogger()
        self._logger.propagate = False
        if not self._logger.handlers:
            self._logger.setLevel(logging.INFO)
            log_handler = logging.StreamHandler()
            log_format = logging.Formatter(
                '[%(levelname)s %(asctime)s %(filename)s:%(lineno)d] %(message)s'
            )
            log_handler.setFormatter(log_format)
            self._logger.addHandler(log_handler)
89

90 91
        self._orig_main_prog = static.default_main_program()
        self._orig_startup_prog = static.default_startup_program()
92
        self._orig_dist_context = get_default_distributed_context()
93
        self._dist_contexts = {}
94 95
        self._serial_main_progs = {}
        self._serial_startup_progs = {}
96 97 98 99
        self._dist_main_progs = defaultdict(dict)  # dist main programs
        self._dist_startup_progs = defaultdict(dict)  # dist startup programs
        self._feed_vars = {}
        self._fetch_vars = {}
100
        self._planners = {}
101 102 103 104 105
        self._mode_init_states = {
            "train": False,
            "eval": False,
            "predict": False
        }
106
        self._dygraph_mode = False
107 108 109 110

    def prepare(self,
                optimizer=None,
                loss=None,
111
                gradient_scale=True,
112 113
                metrics=None,
                all_ranks=False):
114 115 116
        if optimizer and not isinstance(
                optimizer,
            (paddle.optimizer.Optimizer, paddle.fluid.optimizer.Optimizer)):
117 118 119 120
            raise TypeError(
                    "'optimizer' must be object of class `paddle.optimizer.Optimizer`" \
                        " or `paddle.fluid.optimizer.Optimizer`."
                )
121
        self._optimizer = optimizer
122
        self._all_ranks = all_ranks
123 124 125 126 127 128

        if loss and not isinstance(loss,
                                   paddle.nn.Layer) and not callable(loss):
            raise TypeError(
                "'loss' must be sub classes of `paddle.nn.Layer` or any callable function."
            )
129
        self._loss = loss
130 131 132 133 134 135

        metrics = metrics or []
        for metric in to_list(metrics):
            assert isinstance(metric, Metric), \
                "{} is not sub class of Metric".format(
                    metric.__class__.__name__)
136
        self._metrics = to_list(metrics)
137
        self._gradient_scale = gradient_scale
138
        self._planned_mode = None
139
        self._prepare_single_mode("train")
140

141
    def _prepare_single_mode(self, mode):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

        self._build(mode)
        # Do the planning process
        self._plan(mode)

        # Do the Optimization tuning
        if self._user_tuning_config and mode == "train":
            self._optimization_tuning(mode)

        # Do the parallel process
        self._parallel(mode, self._all_ranks)

        # Init comm and startup program
        self._initialize(mode)
        self._mode_init_states[mode] = True
157

158
    def _build(self, mode):
159
        if _non_static_mode() or self._dygraph_mode:
160
            paddle.disable_static()
161 162 163
            self._dygraph_mode = True
            self._logger.info("Building model with 'to_static' method.")

164 165 166
            program_helper = ProgramHelper(self.model, self._loss,
                                           self._metrics, self.inputs_spec,
                                           self.labels_spec)
167
            # build forward main program
168
            program_helper.build_program(mode)
169

170 171 172
            self.concrete_program = program_helper.concrete_program
            serial_main_prog = program_helper.main_program
            serial_startup_prog = program_helper.startup_program
173

174 175 176 177 178
            inputs = program_helper.input_vars
            outputs = program_helper.output_vars
            labels = program_helper.label_vars
            losses = program_helper.loss_vars
            metrics = program_helper.metric_vars
179

180
            paddle.enable_static()
181 182 183 184 185 186 187 188 189 190
        else:
            # build program in static mode
            serial_main_prog = self._serial_main_progs.get(mode, None)
            if serial_main_prog is not None:
                return

            losses = []
            metrics = []
            serial_main_prog = self._orig_main_prog.clone()
            serial_startup_prog = self._orig_startup_prog.clone()
191
            # FIXME to support grad clip
J
JZ-LIANG 已提交
192 193
            with static.program_guard(serial_main_prog, serial_startup_prog), \
                utils.unique_name.guard():
194 195 196 197 198 199 200 201 202 203 204 205
                inputs_spec = self.inputs_spec
                labels_spec = self.labels_spec if self.labels_spec else []
                inputs = [s._create_feed_layer() for s in inputs_spec]
                labels = [s._create_feed_layer() for s in labels_spec]
                outputs = to_list(self.model(*inputs))
                if mode != "predict" and self._loss:
                    losses = to_list(self._loss(*(outputs + labels)))

                if mode != "predict":
                    for metric in self._metrics:
                        metrics.extend(
                            to_list(metric.compute(*(outputs + labels))))
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

        default_ctx = get_default_distributed_context()
        if not default_ctx.has_annotation:
            # We build the world process group because the data parallel
            # needs all ranks by default.
            new_process_group(list(range(self._nranks)))
            default_ctx.data_parallel = True

        feed_vars = {"inputs": inputs, "labels": labels}

        fetch_vars = {
            "outputs": flatten(outputs),
            "loss": losses,
            "metrics": metrics
        }

222
        self._set_recompute_ckpts()
223 224 225 226
        self._dist_contexts[mode] = DistributedContext(
            serial_main_prog, serial_startup_prog, self._optimizer, losses,
            feed_vars, fetch_vars, self.cluster, self.strategy)
        self._dist_contexts[mode].gradient_scale = self._gradient_scale
227
        self._dist_contexts[mode]._dygraph_mode = self._dygraph_mode
228

229 230 231 232 233 234 235
    def _optimization_tuning(self, mode):

        self.mode = mode
        assert "batch_size" in self._user_tuning_config, "Optimization Tuning should provide with batch size."
        assert "dataset" in self._user_tuning_config, "Optimization Tuning should provide with dataset."
        batch_size = self._user_tuning_config["batch_size"]
        dataset = self._user_tuning_config["dataset"]
236 237
        dataset.dp_world_size = self.dp_world_sizes
        dataset.dp_rank = self.dp_ranks
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256

        from .tuner.optimization_tuner import OptimizationTuner
        self._optimization_tuner = OptimizationTuner(self._user_tuning_config,
                                                     self._dist_contexts[mode],
                                                     dataset,
                                                     self.inputs_spec,
                                                     self.labels_spec,
                                                     batch_size=batch_size,
                                                     rank=self._cur_rank)

        self._optimization_tuner.tune()

        if self._user_tuning_config["run_after_tuning"]:
            # update the strategy
            self._dist_contexts[
                mode]._strategy = self._optimization_tuner.get_best_config()
        else:
            return

257 258 259 260 261 262
    def _plan(self, mode):
        if self._planned_mode is None:
            self._planned_mode = mode
        else:
            self._init_dist_context(mode)

263 264
        self._planners[mode] = Planner(mode, self._dist_contexts[mode])
        self._planners[mode].plan()
265

266 267 268 269 270 271 272 273 274
        # infer data parallel info
        inputs_var = self._dist_contexts[mode].serial_feed_vars["inputs"]
        labels_var = self._dist_contexts[mode].serial_feed_vars["labels"]
        block = self._dist_contexts[mode].serial_main_program.global_block()
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in block.vars:
                feed_list.append(block.vars[var.name])

275 276 277 278 279 280 281
        self.dp_world_sizes = []
        self.dp_ranks = []
        for feed_var in feed_list:
            dp_world_size, dp_rank = self._get_input_split_info(
                feed_var, self._dist_contexts[mode])
            self.dp_world_sizes.append(dp_world_size)
            self.dp_ranks.append(dp_rank)
282

283
    def _parallel(self, mode, all_ranks):
284 285 286
        # Parallelize program based on the planner's results
        # For now, the completer has to be passed to the planner,
        # because we may use it to complete the annotation of the backwarkward and update.
287
        parallelizer = Parallelizer(mode, self._planners[mode].completer,
288 289 290 291 292
                                    self._dist_contexts[mode])
        if not all_ranks:
            parallelizer.parallel(self._cur_rank)
        else:
            parallelizer.parallel_all()
293 294

    def _init_dist_context(self, mode):
295
        # Init dist_context['mode'] with the first planned dist_context
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
        # to guarantee that train/eval/predict mode have same parallel strategy
        dist_context = self._dist_contexts[mode]
        origin_main_prog = dist_context._original_serial_main_program
        ref_mode = self._planned_mode
        ref_dist_context = self._dist_contexts[ref_mode]
        ref_origin_main_prog = ref_dist_context._original_serial_main_program
        ref_blocks = ref_origin_main_prog.blocks
        for ib, block in enumerate(origin_main_prog.blocks):
            for iop, op in enumerate(block.ops):
                ref_op = ref_blocks[ib].ops[iop]
                assert op.type == ref_op.type, \
                    "'{}' mode op '{}' is different with '{}' op '{}'. ".format(mode, op.type, ref_mode, ref_op.type)
                ref_op_dist_attr = ref_dist_context.get_op_dist_attr_for_program(
                    ref_op)
                dist_context.set_op_dist_attr_for_program(op, ref_op_dist_attr)

    def _initialize(self, mode):
313
        # Get the current content from the distributed context
314 315 316 317
        self._serial_main_progs[mode] = self._dist_contexts[
            mode].serial_main_program
        self._serial_startup_progs[mode] = self._dist_contexts[
            mode].serial_startup_program
318 319 320 321
        self._dist_main_progs[mode] = self._dist_contexts[
            mode].dist_main_programs
        self._dist_startup_progs[mode] = self._dist_contexts[
            mode].dist_startup_programs
322 323
        self._feed_vars[mode] = self._dist_contexts[mode].serial_feed_vars
        self._fetch_vars[mode] = self._dist_contexts[mode].serial_fetch_vars
324
        self._lr_optimizer = self._dist_contexts[mode]._lr_optimizer
325

326 327 328 329
        if self._nranks > 1:
            # Traverse different rank programs and traverse each op of them,
            # instantiate communication by process_mapping.
            all_process_groups = get_all_process_groups()
330

331
            # NOTE: add the comm init control in the future for auto search
332 333 334 335
            for process_group in all_process_groups:
                if self._cur_rank not in process_group.ranks:
                    continue
                process_group.instantiate()
336 337 338 339

        self._place = _get_device()
        if isinstance(self._place, fluid.CUDAPlace):
            self._place = fluid.CUDAPlace(ParallelEnv().dev_id)
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368

        if self._dygraph_mode:
            paddle.disable_static()
            main_program = self._dist_main_progs[mode][self._cur_rank]
            for param in self.concrete_program.parameters:
                # create var in scope and share parameters to scope
                if param.name not in main_program.global_block().vars:
                    continue
                # get param_var's dist_attr
                var = main_program.global_block().vars[param.name]
                var_dist_attr = self._dist_contexts[
                    mode].get_tensor_dist_attr_for_program(var)
                dist_attr = {
                    "dims_mapping": var_dist_attr.dims_mapping,
                    "process_shape": var_dist_attr.process_mesh.topology,
                    "process_group": var_dist_attr.process_mesh.processes
                }
                # slice param_value with dist_attr
                # share sliced_param_value with param_tensor in global_scope
                from .converter import Converter
                param_tensor = global_scope().var(param.name).get_tensor()
                sliced_param = Converter.slice_with_dist_attr(
                    param.numpy(), dist_attr)
                shared_tensor = paddle.to_tensor(sliced_param,
                                                 place=self._place)
                param_tensor._share_data_with(
                    shared_tensor.value().get_tensor())
            paddle.enable_static()

369 370
        if self._executor is None:
            self._executor = paddle.static.Executor(self._place)
371 372 373 374 375 376 377 378 379 380
            uninitialized = []
            dist_startup_prog = self._dist_startup_progs[mode][self._cur_rank]
            for var in dist_startup_prog.list_vars():
                scope_var = global_scope().find_var(var.name)
                if scope_var and scope_var.get_tensor()._is_initialized():
                    continue
                uninitialized.append(var)
            if uninitialized:
                prune_startup_prog = dist_startup_prog._prune(uninitialized)
                self._executor.run(prune_startup_prog)
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
            if self.strategy.amp and self.strategy.amp_configs['use_pure_fp16']:
                # from paddle.fluid.contrib.mixed_precision.fp16_utils import cast_parameters_to_fp16
                def cast_parameters_to_fp16(place,
                                            program,
                                            scope=None,
                                            to_fp16_var_names=None):
                    """
                    Traverse all parameters in the whole model and set them to the FP16 data type.
                    Whereas, this function will keep parameters of batchnorms in FP32.
                    Args:
                        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the FP16 weight tensors.
                        program (Program): The used program.
                        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                                    Default is None.
                        to_fp16_var_names(set|list, optional): The data types of vars in `to_fp16_var_names`
                                                            will be set to FP16. Usually, it is the returned
                                                            value of `cast_model_to_fp16` API.
                    """
                    from paddle.framework import core
                    import numpy as np
                    all_parameters = []
                    for block in program.blocks:
                        all_parameters.extend(block.all_parameters())

                    var_scope = scope if scope else paddle.static.global_scope()
                    for param in all_parameters:
                        if param.dtype == core.VarDesc.VarType.FP16:
                            param_t = var_scope.find_var(
                                param.name).get_tensor()
                            data = np.array(param_t)
                            param_t.set(np.float16(data), place)

                cast_parameters_to_fp16(self._place, prune_startup_prog)

416 417 418 419
    def fit(self,
            train_data,
            batch_size=1,
            epochs=1,
420
            fetches=None,
421
            steps_per_epoch=None,
422 423
            collate_fn=None,
            use_cache=False,
424
            return_numpy=True):
425 426
        # TODO: callbacks
        # TODO: evaluate after training
427 428 429 430 431 432

        if not self._mode_init_states['train']:
            raise Exception(
                "train program is not initialized yet, please call engine.prepare() before calling fit() funtion."
            )

433
        self.mode = 'train'
434
        assert self.mode in self._dist_main_progs, \
435
            "train model is not ready, please call `engine.prepare()` first."
436
        train_dataloader = self._create_dataloader(train_data, batch_size,
437 438
                                                   epochs, steps_per_epoch,
                                                   collate_fn)
439

440 441
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
442
        fetch_list, fetch_map = self._fetch_map(fetch_loss, usr_fetch)
443 444
        lr_scheduler = self.get_lr_scheduler(self.main_program)

445
        for epoch in range(epochs):
446
            train_logs = {"epoch: {:d} ": epoch}
447
            for step, _ in enumerate(train_dataloader):
448 449 450 451 452 453 454
                try:
                    outs = self._executor.run(self.main_program,
                                              fetch_list=fetch_list,
                                              use_program_cache=use_cache,
                                              return_numpy=return_numpy)
                except fluid.core.EOFException:
                    break
455

456
                train_logs["step: {:d} "] = step
457 458
                if lr_scheduler is not None:
                    lr_scheduler.step()
459 460 461 462 463 464
                    try:
                        train_logs["lr: {:5e} "] = self._lr_optimizer.get_lr()
                    except:
                        train_logs[
                            "lr: {:5e} "] = self._lr_optimizer._learning_rate.get_lr(
                            )
465 466
                # inner fetches
                if fetch_loss:
467
                    train_logs["loss: {:9f} "] = outs[0][0]
468 469 470 471
                # user fetches
                user_outs = outs[len(fetch_loss):]
                user_fetch_list = fetch_list[len(fetch_loss):]
                for i, out in enumerate(user_outs):
472 473 474 475
                    train_logs[fetch_map[user_fetch_list[i]] + ": {}"] = out
                # logger
                string = '[train] ' + ''.join(list(train_logs.keys()))
                self._logger.info(string.format(*list(train_logs.values())))
476

477 478 479
    def evaluate(self,
                 eval_data,
                 batch_size=1,
480
                 fetches=None,
481 482
                 collate_fn=None,
                 use_cache=False,
483
                 return_numpy=True):
484
        self.mode = 'eval'
485 486 487
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

488
        assert self.mode in self._dist_main_progs, \
489
            "eval model is not ready, please call `engine.prepare()` first."
490 491 492
        eval_dataloader = self._create_dataloader(eval_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
493

494 495 496
        usr_fetch = self._validate_fetches(fetches)
        fetch_loss = self._validate_fetches(self.fetch_vars["loss"])
        fetch_metrics = self._validate_fetches(self.fetch_vars["metrics"])
497 498 499 500
        inner_fetch = dict(fetch_loss, **fetch_metrics)
        fetch_list, fetch_map = self._fetch_map(inner_fetch, usr_fetch)

        for step, _ in enumerate(eval_dataloader):
501
            eval_logs = {"step: {:d} ": step}
502 503 504 505 506 507 508
            try:
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_cache,
                                          return_numpy=return_numpy)
            except fluid.core.EOFException:
                break
509 510
            # inner fetches
            if fetch_loss:
511
                eval_logs["loss: {:9f} "] = outs[0][0]
512 513 514 515 516 517 518
            # Metric
            if fetch_metrics:
                metric_out = outs[len(fetch_loss):len(inner_fetch)]
                for metric in self._metrics:
                    metric.update(*metric_out)
                    results = metric.accumulate()
                    for i, res in enumerate(to_list(results)):
519
                        eval_logs[metric.name()[i] + ": {:9f} "] = res
520
            # usr fetches
521
            usr_outs = outs[len(inner_fetch):]
522
            usr_fetch_list = fetch_list[len(inner_fetch):]
523
            for i, out in enumerate(usr_outs):
524
                eval_logs[fetch_map[usr_fetch_list[i]] + ": {}"] = out
525
            # logger
526 527
            string = '[eval] ' + ''.join(list(eval_logs.keys()))
            self._logger.info(string.format(*list(eval_logs.values())))
528

529 530 531
    def predict(self,
                test_data,
                batch_size=1,
532
                fetches=None,
533 534
                collate_fn=None,
                use_cache=False,
535
                return_numpy=True):
536
        self.mode = 'predict'
537 538 539
        if not self._mode_init_states[self.mode]:
            self._prepare_single_mode(self.mode)

540
        assert self.mode in self._dist_main_progs, \
541
            "predict model is not ready, please call `engine.prepare()` first."
542 543 544
        test_dataloader = self._create_dataloader(test_data,
                                                  batch_size,
                                                  collate_fn=collate_fn)
545

546 547
        usr_fetch = self._validate_fetches(fetches)
        fetch_outputs = self._validate_fetches(self.fetch_vars["outputs"])
548
        fetch_list, fetch_map = self._fetch_map(fetch_outputs, usr_fetch)
549 550

        outputs = []
551
        for step, _ in enumerate(test_dataloader):
552
            predict_logs = {"step: {:d} ": step}
553 554 555 556 557 558 559
            try:
                outs = self._executor.run(self.main_program,
                                          fetch_list=fetch_list,
                                          use_program_cache=use_cache,
                                          return_numpy=return_numpy)
            except fluid.core.EOFException:
                break
560 561
            outputs.append(outs[:len(fetch_outputs)])
            for i, out in enumerate(outs):
562 563 564 565
                predict_logs[fetch_map[fetch_list[i]] + ": {}"] = out
            # logger
            string = '[pred] ' + ''.join(list(predict_logs.keys()))
            self._logger.info(string.format(*list(predict_logs.values())))
566

567
        return outputs
568

569 570 571 572
    def _create_dataloader(self,
                           dataset,
                           batch_size,
                           epochs=1,
573 574
                           steps_per_epoch=None,
                           collate_fn=None):
575 576 577 578
        dist_main_prog = self._dist_main_progs[self.mode][self._cur_rank]
        dist_startup_prog = self._dist_startup_progs[self.mode][self._cur_rank]
        dist_context = self._dist_contexts[self.mode]
        dist_main_block = dist_main_prog.global_block()
579

580
        # NOTE: Get feed_list from dist_program, then insert dataloader op
581 582
        # with sharded var shape. Because predict_program does not contain
        # labels var, so we will filter dataset's value with length of feed_list.
583 584 585 586 587 588 589 590
        inputs_var = self._feed_vars[self.mode]["inputs"]
        labels_var = self._feed_vars[self.mode]["labels"]
        feed_list = []
        for var in inputs_var + labels_var:
            if var.name in dist_main_block.vars:
                feed_list.append(dist_main_block.vars[var.name])

        # remove the first three ops if multi run fit/evaluate/predict
591
        op_size = len(dist_main_block.ops)
592 593 594 595
        if dist_main_block.ops[0].type == 'create_py_reader':
            op_size -= 3
            for _ in range(3):
                dist_main_block._remove_op(0, sync=False)
596 597

        # insert read op at the end of program
598
        places = paddle.static.cuda_places()
599
        with static.program_guard(dist_main_prog, dist_startup_prog):
600
            dataloader = NonIterableGeneratorLoader(
601 602 603 604 605 606
                dataset,
                feed_list,
                places,
                batch_size,
                epochs,
                steps_per_epoch,
607
                collate_fn,
608 609 610
                data_parallel_world_size=self.dp_world_sizes,
                data_parallel_rank=self.dp_ranks,
                split_data=self.strategy.split_data)
611 612

        # move read op from the end of program to the start of program
613
        new_op_size = len(dist_main_block.ops)
614
        for _ in range(new_op_size - 1, op_size - 1, -1):
615 616 617
            op = dist_main_block.ops[new_op_size - 1]
            new_op_desc = dist_main_block.desc._prepend_op()
            new_op_desc.copy_from(op.desc)
618 619 620
            new_op = Operator(dist_main_block,
                              new_op_desc,
                              type=new_op_desc.type())
621 622 623 624 625 626 627 628
            dist_main_block.ops.insert(0, new_op)
            dist_op = DistributedOperator(new_op)
            dist_context.add_dist_op_for_program(dist_op)
        for _ in range(new_op_size - op_size):
            dist_main_block._remove_op(new_op_size, sync=False)
        dist_main_block._sync_with_cpp()
        return dataloader

629 630 631 632 633 634 635 636 637 638 639
    def _validate_spec(self, specs):
        specs = to_list(specs)
        if specs is not None:
            for i, spec in enumerate(specs):
                assert isinstance(spec, InputSpec)
                if spec.name is None:
                    raise ValueError(
                        "Requires Input[{}].name != None, but receive `None` with {}."
                        .format(i, spec))
        return specs

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
    def _is_local_var(self, var):
        var_name = _to_name_str(var)
        return var_name in self.main_program.global_block().vars

    def _validate_fetches(self, fetches):
        # 1. Check user-defined fetches type
        # 2. Prepare fetches_dict like {user_defined_name: var_name}
        if not fetches:
            return {}
        if isinstance(fetches, dict):
            fetch_var_names = list(map(_to_name_str, fetches.values()))
            fetches_dict = dict(zip(fetch_var_names, list(fetches.keys())))
        elif isinstance(fetches, list):
            fetch_var_names = list(map(_to_name_str, fetches))
            fetches_dict = dict(zip(fetch_var_names, fetch_var_names))
655
        else:
656 657 658 659 660 661 662 663 664 665 666 667 668
            raise TypeError("'fetches' only support 'dict' and 'list', "
                            "but got '{}'".format(str(type(fetches))))
        return dict(
            filter(lambda x: self._is_local_var(x[0]), fetches_dict.items()))

    def _fetch_map(self, inner_fetch, usr_fetch):
        # replace inner fetch name if usr set for it
        for iname in inner_fetch:
            if iname in usr_fetch:
                inner_fetch[iname] = usr_fetch[iname]
                usr_fetch.pop(iname)
        fetches = dict(inner_fetch, **usr_fetch)
        return list(fetches.keys()), fetches
669

670 671
    def _get_input_split_info(self, var, dist_context):
        # deduce how the input data is split among the cluster
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
        from .utils import _get_comm_group, _get_corresponding_rank

        tensor_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        process_mesh = tensor_dist_attr.process_mesh
        dims_mapping = tensor_dist_attr.dims_mapping

        if self._cur_rank not in process_mesh.processes:
            rank_id = _get_corresponding_rank(dist_context, process_mesh,
                                              self._cur_rank)
        else:
            rank_id = self._cur_rank

        batch_size_axis = dims_mapping[0]
        if batch_size_axis > -1 and process_mesh.topology[batch_size_axis] > 1:
            group_ranks = _get_comm_group(process_mesh.processes,
                                          process_mesh.topology,
                                          batch_size_axis, rank_id)
            return len(group_ranks), group_ranks.index(rank_id)

        return None, None

693 694 695 696 697 698 699 700 701
    def _set_recompute_ckpts(self):
        # NOTE hack to enable recompute in engine api for GPT-3
        # TODO support more PaddleNLP/CV models here

        config = self.strategy.recompute_configs

        # extract ckpts by specific model
        if isinstance(self.model, paddle.nn.Layer):
            if hasattr(
702 703 704
                    self.model, "gpt"
            ) and self.model.__class__.__name__ == 'GPTForPretraining':
                exact_ckpts = self.model.gpt.checkpoints
705 706
            else:
                exact_ckpts = config["checkpoints"]
707 708 709 710 711 712 713 714
        else:
            exact_ckpts = config["checkpoints"]

        # modify strategy
        if self.strategy.recompute:
            config["checkpoints"] = exact_ckpts[:]
            self.strategy.recompute_configs = config
            logs = {
715
                'Model Class': self.model.__class__.__name__,
716 717 718 719
                'Applied Recompute ckpts': exact_ckpts
            }
            self._logger.info(logs)

720 721 722 723 724
    def save(self, path, training=True, mode=None):
        if not mode:
            mode = self.mode

        if training:
725 726
            assert 'train' in self._serial_main_progs, \
                "training model is not ready, please call `engine.prepare()` first."
727 728 729
            serial_program = self._serial_main_progs["train"]
            dist_main_prog = self._dist_main_progs["train"][self._cur_rank]
            dist_context = self._dist_contexts["train"]
730 731 732 733
            self._saver.save(path,
                             serial_program=serial_program,
                             dist_main_program=dist_main_prog,
                             dist_context=dist_context)
734 735 736 737 738
        else:
            assert mode, "Please set the 'mode' you want to save."
            feed_vars = self._feed_vars[mode]['inputs']
            fetch_vars = self._fetch_vars[mode]['outputs']
            dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
739 740 741 742 743
            self._saver.save_inference_model(path,
                                             feed_vars,
                                             fetch_vars,
                                             self._executor,
                                             program=dist_main_prog)
744

745 746 747 748
    def load(self, path, strict=True, load_optimizer=True, mode=None):
        if not mode:
            mode = self.mode
        assert mode, "Please set the 'mode' you want to load."
749

750 751 752 753
        dist_main_prog = self._dist_main_progs[mode][self._cur_rank]
        dist_context = self._dist_contexts[mode]
        self._saver.load(path, dist_main_prog, dist_context, strict,
                         load_optimizer)
754

755 756 757 758 759 760 761 762 763
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
    @property
    def mode(self):
        return self._mode

    @mode.setter
    def mode(self, mode):
        self._mode = mode

    @property
    def main_program(self):
        return self._dist_main_progs[self.mode][self._cur_rank]

    @property
    def startup_program(self):
        return self._dist_startup_progs[self.mode][self._cur_rank]

    @property
    def dist_context(self):
        return self._dist_contexts[self.mode]

    @property
    def serial_main_program(self):
        return self._serial_main_progs[self.mode]

    @property
    def serial_startup_program(self):
        return self._serial_startup_progs[self.mode]
791 792 793 794

    @property
    def fetch_vars(self):
        return self._fetch_vars[self.mode]