elementwise_ops.cc 3.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

class ElementwiseOp : public OpLite {
 public:
  explicit ElementwiseOp(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override {
    CHECK_OR_FALSE(param_.X);
    CHECK_OR_FALSE(param_.Y);
    CHECK_OR_FALSE(param_.Out);
    return true;
  }

  bool InferShape() const override {
    CHECK_OR_FALSE(param_.X->dims().size() >= param_.Y->dims().size());
    param_.Out->Resize(param_.X->dims());
    return true;
  }

  bool AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) override {
    auto X_name = opdesc.Input("X").front();
    auto Y_name = opdesc.Input("Y").front();
    auto Out_name = opdesc.Output("Out").front();

    param_.X = GetVar<lite::Tensor>(scope, X_name);
    param_.Y = GetVar<lite::Tensor>(scope, Y_name);
    param_.Out = GetMutableVar<lite::Tensor>(scope, Out_name);
    param_.axis = opdesc.GetAttr<int>("axis");
    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override { return "elementwise_op"; }

 private:
  mutable operators::ElementwiseParam param_;
};

#ifdef LITE_WITH_X86
class ElementwiseGradExplicitOp : public OpLite {
 public:
  explicit ElementwiseGradExplicitOp(const std::string& type) : OpLite(type) {}

  bool CheckShape() const override {
    CHECK_OR_FALSE(param_.Y);
    CHECK_OR_FALSE(param_.X_grad);
    CHECK_OR_FALSE(param_.Y_grad);
    CHECK_OR_FALSE(param_.Out_grad);
    return true;
  }

  bool InferShape() const override {
    param_.X_grad->Resize(param_.Out_grad->dims());
    param_.Y_grad->Resize(param_.Y->dims());
    return true;
  }

  bool AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) override {
    CHECK_EQ(opdesc.InputArgumentNames().size(), 1UL);
    auto Out_name = opdesc.Input(framework::GradVarName("Out")).front();
    auto X_name = opdesc.Output(framework::GradVarName("X")).front();
    auto Y_name = opdesc.Output(framework::GradVarName("Y")).front();

    param_.Out_grad = GetVar<lite::Tensor>(scope, Out_name);
    param_.X_grad = GetMutableVar<lite::Tensor>(scope, X_name);
    param_.Y_grad = GetMutableVar<Tensor>(scope, Y_name);
    param_.axis = opdesc.GetAttr<int>("axis");

    return true;
  }

  void AttachKernel(KernelBase* kernel) override { kernel->SetParam(param_); }

  std::string DebugString() const override {
    return "elementwise_grad_explicit_op";
  }

 private:
  mutable operators::ElementwiseGradParam param_;
};
#endif

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(elementwise_sub, paddle::lite::operators::ElementwiseOp);
#ifdef LITE_WITH_X86
REGISTER_LITE_OP(elementwise_sub_grad,
                 paddle::lite::operators::ElementwiseGradExplicitOp);
#endif
REGISTER_LITE_OP(elementwise_add, paddle::lite::operators::ElementwiseOp);