analyzer_seq_pool1_tester.cc 7.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
static const char out_var_name[] = "reduce_sum_0.tmp_0";

// for diff: 154, for speed 111
constexpr int num_slots = 154;

struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
      PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0UL,
                        "line %d, %s should be divisible", num_lines, name);
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
    PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
                      "num samples should be divisible");
    PADDLE_ENFORCE_GT(num_samples, 0UL);
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
      PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
                        "size of each slot should be equal");
    }
    size_t num_batches = num_samples / bs;
    EXPECT_GT(num_batches, 0);
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
          PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
                            "%s %d size should be divisible", slot.name, id);
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
}

void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrDebug();
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
  if (FLAGS_zero_copy) {
    cfg->SwitchUseFeedFetchOps(false);
  }
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
  // Enable seqpool_concat_fuse_pass, disabled by default since it takes much
  // time
  cfg->pass_builder()->InsertPass(2, "seqpool_concat_fuse_pass");
}

void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
  SetConfig(&cfg, use_mkldnn);

  std::vector<std::vector<PaddleTensor>> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

// Compare Deterministic result
TEST(Analyzer_seq_pool1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
  ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
  ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
  LOG(INFO) << "num_ops: " << num_ops;
  EXPECT_EQ(num_ops, 171);
}

// Compare result of AnalysisConfig and AnalysisConfig + ZeroCopy
TEST(Analyzer_seq_pool1, compare_zero_copy) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  std::vector<std::string> outputs_name;
  outputs_name.emplace_back(out_var_name);
  CompareAnalysisAndZeroCopy(reinterpret_cast<PaddlePredictor::Config *>(&cfg),
                             input_slots_all, outputs_name);
}

}  // namespace analysis
}  // namespace inference
}  // namespace paddle