analyzer_rnn2_tester.cc 5.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

using namespace framework;  // NOLINT
static std::vector<float> result_data;

struct DataRecord {
  std::vector<std::vector<std::vector<float>>> link_step_data_all;
  std::vector<size_t> lod;
  std::vector<std::vector<float>> rnn_link_data;
  size_t num_samples;  // total number of samples
  size_t batch_iter{0};
  size_t batch_size{1};
  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1)
      : batch_size(batch_size) {
    Load(path);
  }
  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= link_step_data_all.size()) {
      data.link_step_data_all.assign(link_step_data_all.begin() + batch_iter,
                                     link_step_data_all.begin() + batch_end);
      // Prepare LoDs
      data.lod.push_back(0);
      CHECK(!data.link_step_data_all.empty()) << "empty";
      for (size_t j = 0; j < data.link_step_data_all.size(); j++) {
        for (const auto &d : data.link_step_data_all[j]) {
          data.rnn_link_data.push_back(d);
          // calculate lod
          data.lod.push_back(data.lod.back() + 11);
        }
      }
    }
    batch_iter += batch_size;
    return data;
  }
  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    result_data.clear();
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ':', &data);
      if (num_lines % 2) {  // feature
        std::vector<std::string> feature_data;
        split(data[1], ' ', &feature_data);
        std::vector<std::vector<float>> link_step_data;
        int feature_count = 1;
        std::vector<float> feature;
        for (auto &step_data : feature_data) {
          std::vector<float> tmp;
          split_to_float(step_data, ',', &tmp);
          feature.insert(feature.end(), tmp.begin(), tmp.end());
          if (feature_count % 11 == 0) {  // each sample has 11 features
            link_step_data.push_back(feature);
            feature.clear();
          }
          feature_count++;
        }
        link_step_data_all.push_back(std::move(link_step_data));
      } else {  // result
        std::vector<float> tmp;
        split_to_float(data[1], ',', &tmp);
        result_data.insert(result_data.end(), tmp.begin(), tmp.end());
      }
    }
    num_samples = num_lines / 2;
  }
};
void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor feed_tensor;
  feed_tensor.name = "feed";
  auto one_batch = data->NextBatch();
  int token_size = one_batch.rnn_link_data.size();
  // each token has 11 features, each feature's dim is 54.
  std::vector<int> rnn_link_data_shape({token_size * 11, 54});
  feed_tensor.shape = rnn_link_data_shape;
  feed_tensor.lod.assign({one_batch.lod});
  feed_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&feed_tensor, one_batch.rnn_link_data);
  // Set inputs.
  input_slots->assign({feed_tensor});
}

void SetConfig(AnalysisConfig *cfg) {
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim();
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "number of samples: " << epoch * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
TEST(Analyzer_rnn2, profile) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  std::vector<std::vector<PaddleTensor>> outputs;

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    // the first inference result
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    auto output = outputs.back();
    PADDLE_ENFORCE_GT(output.size(), 0);
    size_t size = GetSize(output[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(output[0].data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
    }
  }
}

// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_rnn2, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

// Compare Deterministic result
TEST(Analyzer_rnn2, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

}  // namespace inference
}  // namespace paddle