analyzer_dam_tester.cc 12.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tests/api/tester_helper.h"

DEFINE_int32(max_turn_num, 9,
             "The max turn number: 1 for the small and 9 for the normal.");

namespace paddle {
namespace inference {

constexpr int32_t kMaxTurnLen = 50;

static std::vector<float> result_data;

struct DataRecord {
  std::vector<std::vector<int64_t>> *turns;
  std::vector<std::vector<float>> *turns_mask;
  std::vector<std::vector<int64_t>> response;     // response data : 1
  std::vector<std::vector<float>> response_mask;  // response mask data : 1
  size_t batch_iter{0};
  size_t batch_size{1};
  size_t num_samples;  // total number of samples

  DataRecord() {
    turns = new std::vector<std::vector<
        int64_t>>[FLAGS_max_turn_num];  // turns data : FLAGS_max_turn_num
    turns_mask = new std::vector<std::vector<
        float>>[FLAGS_max_turn_num];  // turns mask data : FLAGS_max_turn_num
  }

  explicit DataRecord(const std::string &path, int batch_size = 1)
      : DataRecord() {
    this->batch_size = batch_size;
    Load(path);
  }

  ~DataRecord() {
    delete[] turns;
    delete[] turns_mask;
  }

  DataRecord NextBatch() {
    DataRecord data;
    size_t batch_end = batch_iter + batch_size;
    // NOTE skip the final batch, if no enough data is provided.
    if (batch_end <= response.size()) {
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        data.turns[i].assign(turns[i].begin() + batch_iter,
                             turns[i].begin() + batch_end);
      }
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        data.turns_mask[i].assign(turns_mask[i].begin() + batch_iter,
                                  turns_mask[i].begin() + batch_end);
      }
      data.response.assign(response.begin() + batch_iter,
                           response.begin() + batch_end);
      data.response_mask.assign(response_mask.begin() + batch_iter,
                                response_mask.begin() + batch_end);
      CHECK(!data.response.empty());
      CHECK(!data.response_mask.empty());
      CHECK_EQ(data.response.size(), data.response_mask.size());
    }
    batch_iter += batch_size;
    return data;
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    size_t num_lines = 0;
    result_data.clear();
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, ',', &data);
      CHECK_EQ(data.size(), (size_t)(2 * FLAGS_max_turn_num + 3));
      // load turn data
      std::vector<int64_t> turns_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        split_to_int64(data[i], ' ', &turns_tmp[i]);
        turns[i].push_back(std::move(turns_tmp[i]));
      }
      // load turn_mask data
      std::vector<float> turns_mask_tmp[FLAGS_max_turn_num];
      for (int i = 0; i < FLAGS_max_turn_num; ++i) {
        split_to_float(data[FLAGS_max_turn_num + i], ' ', &turns_mask_tmp[i]);
        turns_mask[i].push_back(std::move(turns_mask_tmp[i]));
      }
      // load response data
      std::vector<int64_t> response_tmp;
      split_to_int64(data[2 * FLAGS_max_turn_num], ' ', &response_tmp);
      response.push_back(std::move(response_tmp));
      // load response_mask data
      std::vector<float> response_mask_tmp;
      split_to_float(data[2 * FLAGS_max_turn_num + 1], ' ', &response_mask_tmp);
      response_mask.push_back(std::move(response_mask_tmp));
      // load result data
      float result_tmp;
      result_tmp = std::stof(data[2 * FLAGS_max_turn_num + 2]);
      result_data.push_back(result_tmp);
    }
    num_samples = num_lines;
  }
};

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
                   int batch_size) {
  PaddleTensor turns_tensor[FLAGS_max_turn_num];
  PaddleTensor turns_mask_tensor[FLAGS_max_turn_num];
  PaddleTensor response_tensor;
  PaddleTensor response_mask_tensor;
  std::string turn_pre = "turn_";
  std::string turn_mask_pre = "turn_mask_";

  auto one_batch = data->NextBatch();
  PADDLE_ENFORCE(!one_batch.response.empty());
  int size = one_batch.response[0].size();
  CHECK_EQ(size, kMaxTurnLen);
  // turn tensor assignment
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
    turns_tensor[i].name = turn_pre + std::to_string(i);
    turns_tensor[i].shape.assign({batch_size, size, 1});
    turns_tensor[i].dtype = PaddleDType::INT64;
    TensorAssignData<int64_t>(&turns_tensor[i], one_batch.turns[i]);
  }
  // turn mask tensor assignment
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
    turns_mask_tensor[i].name = turn_mask_pre + std::to_string(i);
    turns_mask_tensor[i].shape.assign({batch_size, size, 1});
    turns_mask_tensor[i].dtype = PaddleDType::FLOAT32;
    TensorAssignData<float>(&turns_mask_tensor[i], one_batch.turns_mask[i]);
  }
  // response tensor assignment
  response_tensor.name = "response";
  response_tensor.shape.assign({batch_size, size, 1});
  response_tensor.dtype = PaddleDType::INT64;
  TensorAssignData<int64_t>(&response_tensor, one_batch.response);
  // response mask tensor assignment
  response_mask_tensor.name = "response_mask";
  response_mask_tensor.shape.assign({batch_size, size, 1});
  response_mask_tensor.dtype = PaddleDType::FLOAT32;
  TensorAssignData<float>(&response_mask_tensor, one_batch.response_mask);

  // Set inputs.
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
    input_slots->push_back(std::move(turns_tensor[i]));
  }
  for (int i = 0; i < FLAGS_max_turn_num; ++i) {
    input_slots->push_back(std::move(turns_mask_tensor[i]));
  }
  input_slots->push_back(std::move(response_tensor));
  input_slots->push_back(std::move(response_mask_tensor));
}

void SetConfig(AnalysisConfig *cfg) {
  cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
  cfg->SwitchSpecifyInputNames();
  cfg->SwitchIrOptim(true);
}

void SetOptimConfig(AnalysisConfig *cfg) {
  std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
  cfg->SetModel(optimModelPath + "/model", optimModelPath + "/params");
  cfg->SwitchIrOptim(true);
  cfg->SwitchSpecifyInputNames();
}

void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int test_batch_num =
      FLAGS_test_all_data ? data.num_samples / FLAGS_batch_size : 1;
  LOG(INFO) << "The number of samples to be test: "
            << test_batch_num * FLAGS_batch_size;
  for (int bid = 0; bid < test_batch_num; ++bid) {
    input_slots.clear();
    PrepareInputs(&input_slots, &data, FLAGS_batch_size);
    (*inputs).emplace_back(input_slots);
  }
}

// Easy for profiling independently.
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  if (use_mkldnn) {
    cfg.EnableMKLDNN();
    // Enable all the mkldnn supported ops except conv3d in dam
    std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
                                               "relu"};
    cfg.SetMKLDNNOp(op_list);
  }

  std::vector<std::vector<PaddleTensor>> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);

  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);

  if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
    PADDLE_ENFORCE_GT(outputs.size(), 0);
    auto output = outputs.back();
    PADDLE_ENFORCE_GT(output.size(), 0);
    size_t size = GetSize(output[0]);
    PADDLE_ENFORCE_GT(size, 0);
    float *result = static_cast<float *>(output[0].data.data());
    for (size_t i = 0; i < size; i++) {
      EXPECT_NEAR(result[i], result_data[i], 1e-3);
    }
  }
}

TEST(Analyzer_dam, profile) { profile(); }
#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_dam, profile_mkldnn) { profile(true /* use_mkldnn */); }
#endif

// Check the fuse status
TEST(Analyzer_dam, fuse_statis) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
  auto fuse_statis = GetFuseStatis(
      static_cast<AnalysisPredictor *>(predictor.get()), &num_ops);
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
}

// Compare result of NativeConfig and AnalysisConfig
void compare(bool use_mkldnn = false) {
  AnalysisConfig cfg;
  SetConfig(&cfg);
  if (use_mkldnn) {
    cfg.EnableMKLDNN();
    // Enable all the mkldnn supported ops except conv3d in dam
    std::unordered_set<std::string> op_list = {"softmax", "elementwise_add",
                                               "relu"};
    cfg.SetMKLDNNOp(op_list);
  }

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);

  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

// Compare result of NativeConfig and AnalysisConfig with memory optimization.
TEST(Analyzer_dam, compare_with_static_memory_optim) {
  // The small dam will core in CI, but works in local.
  if (FLAGS_max_turn_num == 9) {
    AnalysisConfig cfg, cfg1;
    DataRecord data(FLAGS_infer_data, FLAGS_batch_size);

    std::vector<std::vector<PaddleTensor>> input_slots_all;
    SetInput(&input_slots_all);
    // Run the first time to force to update memory cache
    SetConfig(&cfg);
    cfg.EnableMemoryOptim(true, true /*force update*/);

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
        input_slots_all);

    // Run second time to use the memory cache and perform memory optimization.
    SetConfig(&cfg1);
    cfg1.EnableMemoryOptim(true, false /*do not force update*/);

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg1),
        input_slots_all);
  }
}

TEST(Analyzer_dam, compare_with_dynamic_memory_optim) {
  // The small dam will core in CI, but works in local.
  if (FLAGS_max_turn_num == 9) {
    AnalysisConfig cfg, cfg1;
    DataRecord data(FLAGS_infer_data, FLAGS_batch_size);

    std::vector<std::vector<PaddleTensor>> input_slots_all;
    SetInput(&input_slots_all);
    // Run the first time to force to update memory cache
    SetConfig(&cfg);
    cfg.EnableMemoryOptim();

    CompareNativeAndAnalysis(
        reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
        input_slots_all);
  }
}

TEST(Analyzer_dam, compare) { compare(); }

#ifdef PADDLE_WITH_MKLDNN
TEST(Analyzer_dam, compare_mkldnn) { compare(true /* use_mkldnn */); }
#endif

// Compare Deterministic result
TEST(Analyzer_dam, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

// Save optim model
TEST(Analyzer_dam, save_optim_model) {
  AnalysisConfig cfg;
  std::string optimModelPath = FLAGS_infer_model + "/saved_optim_model";
  mkdir(optimModelPath.c_str(), 0777);
  SetConfig(&cfg);
  SaveOptimModel(&cfg, optimModelPath);
}

void CompareOptimAndOrig(const PaddlePredictor::Config *orig_config,
                         const PaddlePredictor::Config *optim_config,
                         const std::vector<std::vector<PaddleTensor>> &inputs) {
  PrintConfig(orig_config, true);
  PrintConfig(optim_config, true);
  std::vector<std::vector<PaddleTensor>> orig_outputs, optim_outputs;
  TestOneThreadPrediction(orig_config, inputs, &orig_outputs, false);
  TestOneThreadPrediction(optim_config, inputs, &optim_outputs, false);
  CompareResult(orig_outputs.back(), optim_outputs.back());
}

TEST(Analyzer_dam, compare_optim_orig) {
  AnalysisConfig orig_cfg;
  AnalysisConfig optim_cfg;
  SetConfig(&orig_cfg);
  SetOptimConfig(&optim_cfg);
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareOptimAndOrig(
      reinterpret_cast<const PaddlePredictor::Config *>(&orig_cfg),
      reinterpret_cast<const PaddlePredictor::Config *>(&optim_cfg),
      input_slots_all);
}

}  // namespace inference
}  // namespace paddle