trt_int8_calibrator.cc 5.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#include "glog/logging.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// set the batch size before constructing the thread to execute engine
int TRTInt8Calibrator::getBatchSize() const { return batch_size_; }

TRTInt8Calibrator::TRTInt8Calibrator(
    const std::unordered_map<std::string, size_t>& buffers, int batch_size,
    std::string engine_name, const platform::Place place)
    : batch_size_(batch_size), engine_name_(engine_name) {
  int i = 0;
  VLOG(4) << "Init a new calibrator: " << engine_name_;
  for (const auto it : buffers) {
    framework::Tensor temp_tensor;
    std::string input_name = it.first;
    int data_size = it.second;
    int num_ele = data_size / sizeof(int16_t);
    framework::DDim data_shape = framework::make_ddim({num_ele});
    temp_tensor.Resize(data_shape);
    data_tensors_.push_back(temp_tensor);
    data_buffers_[input_name] = std::pair<void*, size_t>(
        static_cast<void*>(temp_tensor.mutable_data<int16_t>(place)), num_ele);
    i += 1;
  }
}

TRTInt8Calibrator::TRTInt8Calibrator(const std::string& calib_data)
    : batch_size_(0),
      calib_running_(false),
      data_is_set_(false),
      done_(true),
      calibration_table_(calib_data) {}

void TRTInt8Calibrator::waitAndSetDone() {
  std::unique_lock<std::mutex> lk(mut_);
  while ((calib_running_ || data_is_set_) && !done_) cond_.wait(lk);
  if (!done_) {
    done_ = true;
    cond_.notify_all();
  }
}

// There might be more than one input for trt subgraph,
// So, we use a map to store input information.
bool TRTInt8Calibrator::setBatch(
    const std::unordered_map<std::string, void*>& data) {
  VLOG(3) << "set batch: " << engine_name_;
  std::unique_lock<std::mutex> lk(mut_);
  //  There is a producer and a consumer. The producer set the batch data and
  //  the consumer get the batch data. The size of the data pool is one.
  //  So, the producer has to wait for the consumer to finish processing before
  //  they can set the data.
  while ((calib_running_ || data_is_set_) && (!done_)) cond_.wait(lk);
  // The done_ is set to true using waitAndSetDone, When all calibration data
  // are processed.
  if (done_) return false;

  // Sets the batch.
  for (const auto& it : data) {
    auto dataptr = data_buffers_.find(it.first);
    if (dataptr == data_buffers_.end()) {
      LOG(FATAL) << "FATAL " << engine_name_ << " input name '" << it.first
                 << "' does not match with the buffer names";
    }
    const auto& d = dataptr->second;
    PADDLE_ENFORCE(
        cudaMemcpy(d.first, it.second, d.second, cudaMemcpyDeviceToDevice),
        "Fail to cudaMemcpy %s for %s", engine_name_, it.first);
  }

  data_is_set_ = true;
  cond_.notify_all();
  return true;
}

bool TRTInt8Calibrator::getBatch(void** bindings, const char** names,
                                 int num_bindings) {
  VLOG(4) << "get batch: " << engine_name_;
  std::unique_lock<std::mutex> lk(mut_);
  // The consumer has just finished processing a data.
  // The producer can set the data again.
  calib_running_ = false;
  cond_.notify_all();

  // As long as there is data in the pool, the consumer can get it.
  while (!data_is_set_ && !done_) cond_.wait(lk);
  if (done_) return false;

  // Gets the batch
  for (int i = 0; i < num_bindings; i++) {
    auto it = data_buffers_.find(names[i]);
    if (it == data_buffers_.end()) {
      LOG(FATAL) << "Calibration engine asked for unknown tensor name '"
                 << names[i] << "' at position " << i;
    }
    bindings[i] = it->second.first;
  }

  data_is_set_ = false;
  calib_running_ = true;
  VLOG(4) << "get batch done: " << engine_name_;
  return true;
}

void TRTInt8Calibrator::setDone() {
  std::unique_lock<std::mutex> lk(mut_);
  done_ = true;
  cond_.notify_all();
}

const void* TRTInt8Calibrator::readCalibrationCache(size_t& length) {
  if (calibration_table_.empty()) return nullptr;
  length = calibration_table_.size();
  return calibration_table_.data();
}

void TRTInt8Calibrator::writeCalibrationCache(const void* ptr,
                                              std::size_t length) {
  calibration_table_ = std::string((const char*)ptr, length);
  VLOG(4) << "Got calibration data for " << engine_name_ << " " << ptr
          << " length=" << length;
}
TRTInt8Calibrator::~TRTInt8Calibrator() {
  VLOG(4) << "Destroying calibrator for " << engine_name_;
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle