api_impl_tester.cc 11.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>

#include <thread>  // NOLINT

#include "gflags/gflags.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/tests/test_helper.h"

#ifdef __clang__
#define ACC_DIFF 4e-3
#else
#define ACC_DIFF 1e-3
#endif

DEFINE_string(word2vec_dirname, "",
              "Directory of the word2vec inference model.");
DEFINE_string(book_dirname, "", "Directory of the book inference model.");

namespace paddle {

PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) {
  PaddleTensor pt;

  if (t->type() == framework::proto::VarType::INT64) {
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(int64_t));
    pt.dtype = PaddleDType::INT64;
  } else if (t->type() == framework::proto::VarType::FP32) {
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(float));
    pt.dtype = PaddleDType::FLOAT32;
  } else if (t->type() == framework::proto::VarType::INT32) {
    pt.data.Reset(t->data<void>(), t->numel() * sizeof(int32_t));
    pt.dtype = PaddleDType::INT32;
  } else {
    LOG(FATAL) << "unsupported type.";
  }
  pt.shape = framework::vectorize2int(t->dims());
  return pt;
}

NativeConfig GetConfig() {
  NativeConfig config;
  config.model_dir = FLAGS_word2vec_dirname;
  LOG(INFO) << "dirname  " << config.model_dir;
  config.fraction_of_gpu_memory = 0.15;
#ifdef PADDLE_WITH_CUDA
  config.use_gpu = true;
#else
  config.use_gpu = false;
#endif
  config.device = 0;
  return config;
}

void MainWord2Vec(bool use_gpu) {
  NativeConfig config = GetConfig();
  auto predictor = CreatePaddlePredictor<NativeConfig>(config);
  config.use_gpu = use_gpu;

  framework::LoDTensor first_word, second_word, third_word, fourth_word;
  framework::LoD lod{{0, 1}};
  int64_t dict_size = 2073;  // The size of dictionary

  SetupLoDTensor(&first_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&second_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&third_word, lod, static_cast<int64_t>(0), dict_size - 1);
  SetupLoDTensor(&fourth_word, lod, static_cast<int64_t>(0), dict_size - 1);

  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word));
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word));

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
  ASSERT_EQ(outputs.size(), 1UL);
  size_t len = outputs[0].data.length();
  float* data = static_cast<float*>(outputs[0].data.data());
  for (size_t j = 0; j < len / sizeof(float); ++j) {
    ASSERT_LT(data[j], 1.0);
    ASSERT_GT(data[j], -1.0);
  }

  std::vector<paddle::framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&first_word);
  cpu_feeds.push_back(&second_word);
  cpu_feeds.push_back(&third_word);
  cpu_feeds.push_back(&fourth_word);

  framework::LoDTensor output1;
  std::vector<paddle::framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  TestInference<platform::CPUPlace>(config.model_dir, cpu_feeds, cpu_fetchs1);

  float* lod_data = output1.data<float>();
  for (int i = 0; i < output1.numel(); ++i) {
    EXPECT_LT(lod_data[i] - data[i], ACC_DIFF);
    EXPECT_GT(lod_data[i] - data[i], -ACC_DIFF);
  }
}

void MainImageClassification(bool use_gpu) {
  int batch_size = 2;
  bool repeat = false;
  NativeConfig config = GetConfig();
  config.use_gpu = use_gpu;
  config.model_dir =
      FLAGS_book_dirname + "/image_classification_resnet.inference.model";

  const bool is_combined = false;
  std::vector<std::vector<int64_t>> feed_target_shapes =
      GetFeedTargetShapes(config.model_dir, is_combined);

  framework::LoDTensor input;
  // Use normilized image pixels as input data,
  // which should be in the range [0.0, 1.0].
  feed_target_shapes[0][0] = batch_size;
  framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
  SetupTensor<float>(&input, input_dims, static_cast<float>(0),
                     static_cast<float>(1));
  std::vector<framework::LoDTensor*> cpu_feeds;
  cpu_feeds.push_back(&input);

  framework::LoDTensor output1;
  std::vector<framework::LoDTensor*> cpu_fetchs1;
  cpu_fetchs1.push_back(&output1);

  TestInference<platform::CPUPlace, false, true>(
      config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined);

  auto predictor = CreatePaddlePredictor(config);
  std::vector<PaddleTensor> paddle_tensor_feeds;
  paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input));

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs));
  ASSERT_EQ(outputs.size(), 1UL);
  size_t len = outputs[0].data.length();
  float* data = static_cast<float*>(outputs[0].data.data());
  float* lod_data = output1.data<float>();
  for (size_t j = 0; j < len / sizeof(float); ++j) {
    EXPECT_NEAR(lod_data[j], data[j], ACC_DIFF);
  }
}

void MainThreadsWord2Vec(bool use_gpu) {
  NativeConfig config = GetConfig();
  config.use_gpu = use_gpu;
  auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);

  // prepare inputs data and reference results
  constexpr int num_jobs = 3;
  std::vector<std::vector<framework::LoDTensor>> jobs(num_jobs);
  std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
  std::vector<framework::LoDTensor> refs(num_jobs);
  for (size_t i = 0; i < jobs.size(); ++i) {
    // each job has 4 words
    jobs[i].resize(4);
    for (size_t j = 0; j < 4; ++j) {
      framework::LoD lod{{0, 1}};
      int64_t dict_size = 2073;  // The size of dictionary
      SetupLoDTensor(&jobs[i][j], lod, static_cast<int64_t>(0), dict_size - 1);
      paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i][j]));
    }

    // get reference result of each job
    std::vector<paddle::framework::LoDTensor*> ref_feeds;
    std::vector<paddle::framework::LoDTensor*> ref_fetches(1, &refs[i]);
    for (auto& word : jobs[i]) {
      ref_feeds.push_back(&word);
    }
    TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
  }

  // create threads and each thread run 1 job
  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_jobs; ++tid) {
    threads.emplace_back([&, tid]() {
      auto predictor = CreatePaddlePredictor(config);
      auto& local_inputs = paddle_tensor_feeds[tid];
      std::vector<PaddleTensor> local_outputs;
      ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));

      // check outputs range
      ASSERT_EQ(local_outputs.size(), 1UL);
      const size_t len = local_outputs[0].data.length();
      float* data = static_cast<float*>(local_outputs[0].data.data());
      for (size_t j = 0; j < len / sizeof(float); ++j) {
        ASSERT_LT(data[j], 1.0);
        ASSERT_GT(data[j], -1.0);
      }

      // check outputs correctness
      float* ref_data = refs[tid].data<float>();
      EXPECT_EQ(refs[tid].numel(), static_cast<int64_t>(len / sizeof(float)));
      for (int i = 0; i < refs[tid].numel(); ++i) {
        EXPECT_NEAR(ref_data[i], data[i], 2e-3);
      }
    });
  }
  for (int i = 0; i < num_jobs; ++i) {
    threads[i].join();
  }
}

void MainThreadsImageClassification(bool use_gpu) {
  constexpr int num_jobs = 4;  // each job run 1 batch
  constexpr int batch_size = 1;
  NativeConfig config = GetConfig();
  config.use_gpu = use_gpu;
  config.model_dir =
      FLAGS_book_dirname + "/image_classification_resnet.inference.model";

  auto main_predictor = CreatePaddlePredictor<NativeConfig>(config);
  std::vector<framework::LoDTensor> jobs(num_jobs);
  std::vector<std::vector<PaddleTensor>> paddle_tensor_feeds(num_jobs);
  std::vector<framework::LoDTensor> refs(num_jobs);
  for (size_t i = 0; i < jobs.size(); ++i) {
    // prepare inputs
    std::vector<std::vector<int64_t>> feed_target_shapes =
        GetFeedTargetShapes(config.model_dir, /*is_combined*/ false);
    feed_target_shapes[0][0] = batch_size;
    framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]);
    SetupTensor<float>(&jobs[i], input_dims, 0.f, 1.f);
    paddle_tensor_feeds[i].push_back(LodTensorToPaddleTensor(&jobs[i]));

    // get reference result of each job
    std::vector<framework::LoDTensor*> ref_feeds(1, &jobs[i]);
    std::vector<framework::LoDTensor*> ref_fetches(1, &refs[i]);
    TestInference<platform::CPUPlace>(config.model_dir, ref_feeds, ref_fetches);
  }

  // create threads and each thread run 1 job
  std::vector<std::thread> threads;
  for (int tid = 0; tid < num_jobs; ++tid) {
    threads.emplace_back([&, tid]() {
      auto predictor = CreatePaddlePredictor(config);
      auto& local_inputs = paddle_tensor_feeds[tid];
      std::vector<PaddleTensor> local_outputs;
      ASSERT_TRUE(predictor->Run(local_inputs, &local_outputs));

      // check outputs correctness
      ASSERT_EQ(local_outputs.size(), 1UL);
      const size_t len = local_outputs[0].data.length();
      float* data = static_cast<float*>(local_outputs[0].data.data());
      float* ref_data = refs[tid].data<float>();
      EXPECT_EQ((size_t)refs[tid].numel(), len / sizeof(float));
      for (int i = 0; i < refs[tid].numel(); ++i) {
        EXPECT_NEAR(ref_data[i], data[i], ACC_DIFF);
      }
    });
  }
  for (int i = 0; i < num_jobs; ++i) {
    threads[i].join();
  }
}

TEST(inference_api_native, word2vec_cpu) { MainWord2Vec(false /*use_gpu*/); }
TEST(inference_api_native, word2vec_cpu_threads) {
  MainThreadsWord2Vec(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu) {
  MainImageClassification(false /*use_gpu*/);
}
TEST(inference_api_native, image_classification_cpu_threads) {
  MainThreadsImageClassification(false /*use_gpu*/);
}

#ifdef PADDLE_WITH_CUDA
TEST(inference_api_native, word2vec_gpu) { MainWord2Vec(true /*use_gpu*/); }
// Turn off temporarily for the unstable result.
// TEST(inference_api_native, word2vec_gpu_threads) {
//   MainThreadsWord2Vec(true /*use_gpu*/);
// }
TEST(inference_api_native, image_classification_gpu) {
  MainImageClassification(true /*use_gpu*/);
}
// Turn off temporarily for the unstable result.
// TEST(inference_api_native, image_classification_gpu_threads) {
//   MainThreadsImageClassification(true /*use_gpu*/);
// }
#endif

TEST(PassBuilder, Delete) {
  AnalysisConfig config;
  config.DisableGpu();
  config.pass_builder()->DeletePass("attention_lstm_fuse_pass");
  const auto& passes = config.pass_builder()->AllPasses();
  auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass");
  ASSERT_EQ(it, passes.end());
}

}  // namespace paddle