api_anakin_engine.cc 8.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/api/api_anakin_engine.h"

#ifdef PADDLE_WITH_CUDA
#include <cuda.h>
#endif

#include <mkl_service.h>
#include <omp.h>
#include <map>
#include <string>
#include <utility>
#include <vector>

#include "framework/core/net/net.h"
#include "framework/operators/ops.h"
#include "saber/funcs/timer.h"

namespace paddle {

using paddle::contrib::AnakinConfig;

template <typename Target>
PaddleInferenceAnakinPredictor<Target>::PaddleInferenceAnakinPredictor(
    const contrib::AnakinConfig &config) {
  CHECK(Init(config));
}
template <>
PaddleInferenceAnakinPredictor<anakin::X86>::PaddleInferenceAnakinPredictor(
    const contrib::AnakinConfig &config) {
  omp_set_dynamic(0);
  omp_set_num_threads(1);
  mkl_set_num_threads(1);
  CHECK(Init(config));
}
template <typename Target>
bool PaddleInferenceAnakinPredictor<Target>::Init(
    const contrib::AnakinConfig &config) {
  if (!(graph_.load(config.model_file))) {
    VLOG(3) << "fail to load graph from " << config.model_file;
    return false;
  }
  auto inputs = graph_.get_ins();
  for (auto &input_str : inputs) {
    graph_.ResetBatchSize(input_str, config.max_batch_size);
    max_batch_size_ = config.max_batch_size;
  }
  // optimization for graph
  if (!(graph_.Optimize())) {
    return false;
  }
  // construct executer
  if (executor_p_ == nullptr) {
    executor_p_ = new anakin::Net<Target, anakin::saber::AK_FLOAT,
                                  anakin::Precision::FP32>(graph_, true);
  }
  return true;
}

template <typename Target>
bool PaddleInferenceAnakinPredictor<Target>::Run(
    const std::vector<PaddleTensor> &inputs,
    std::vector<PaddleTensor> *output_data, int batch_size) {
  for (const auto &input : inputs) {
    if (input.dtype != PaddleDType::FLOAT32) {
      VLOG(3) << "Only support float type inputs. " << input.name
              << "'s type is not float";
      return false;
    }
    auto d_tensor_in_p = executor_p_->get_in(input.name);
    auto net_shape = d_tensor_in_p->shape();
    if (net_shape.size() != input.shape.size()) {
      VLOG(3) << " input  " << input.name
              << "'s shape size should be equal to that of net";
      return false;
    }
    int sum = 1;
    for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; });
    if (sum > net_shape.count()) {
      graph_.Reshape(input.name, input.shape);
      delete executor_p_;
      executor_p_ = new anakin::Net<Target, anakin::saber::AK_FLOAT,
                                    anakin::Precision::FP32>(graph_, true);
      d_tensor_in_p = executor_p_->get_in(input.name);
    }

    anakin::saber::Shape tmp_shape;
    for (auto s : input.shape) {
      tmp_shape.push_back(s);
    }
    d_tensor_in_p->reshape(tmp_shape);

    if (input.lod.size() > 0) {
      if (input.lod.size() > 1) {
        VLOG(3) << " input lod first dim should <=1, but you set "
                << input.lod.size();
        return false;
      }
      std::vector<int> offset(input.lod[0].begin(), input.lod[0].end());
      d_tensor_in_p->set_seq_offset(offset);
      VLOG(3) << "offset.size(): " << offset.size();
      for (int i = 0; i < offset.size(); i++) {
        VLOG(3) << offset[i];
      }
    }

    float *d_data_p = d_tensor_in_p->mutable_data();

#ifdef PADDLE_WITH_CUDA
    if (std::is_same<anakin::NV, Target>::value) {
      if (cudaMemcpy(d_data_p, static_cast<float *>(input.data.data()),
                     d_tensor_in_p->valid_size() * sizeof(float),
                     cudaMemcpyHostToDevice) != 0) {
        VLOG(3) << "copy data from CPU to GPU error";
        return false;
      }
    }
#endif
    if (std::is_same<anakin::X86, Target>::value) {
      memcpy(d_data_p, static_cast<float *>(input.data.data()),
             d_tensor_in_p->valid_size() * sizeof(float));
    }
  }
#ifdef PADDLE_WITH_CUDA
  cudaDeviceSynchronize();
  executor_p_->prediction();
  cudaDeviceSynchronize();
#endif

  if (output_data->empty()) {
    VLOG(3) << "At least one output should be set with tensors' names.";
    return false;
  }
  for (auto &output : *output_data) {
    auto *tensor = executor_p_->get_out(output.name);
    output.shape = tensor->valid_shape();
    if (output.data.length() < tensor->valid_size() * sizeof(float)) {
      output.data.Resize(tensor->valid_size() * sizeof(float));
    }

#if PADDLE_WITH_CUDA
    if (std::is_same<anakin::NV, Target>::value) {
      // Copy data from GPU -> CPU
      if (cudaMemcpy(output.data.data(), tensor->mutable_data(),
                     tensor->valid_size() * sizeof(float),
                     cudaMemcpyDeviceToHost) != 0) {
        VLOG(3) << "copy data from GPU to CPU error";
        return false;
      }
    }
#endif
    if (std::is_same<anakin::X86, Target>::value) {
      memcpy(output.data.data(), tensor->mutable_data(),
             tensor->valid_size() * sizeof(float));
    }
  }
  return true;
}

template <typename Target>
anakin::Net<Target, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
    &PaddleInferenceAnakinPredictor<Target>::get_executer() {
  return *executor_p_;
}

// the cloned new Predictor of anakin share the same net weights from original
// Predictor
template <typename Target>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<Target>::Clone() {
  VLOG(3) << "Anakin Predictor::clone";
  std::unique_ptr<PaddlePredictor> cls(
      new PaddleInferenceAnakinPredictor<Target>());
  // construct executer from other graph
  auto anakin_predictor_p =
      dynamic_cast<PaddleInferenceAnakinPredictor<Target> *>(cls.get());
  if (!anakin_predictor_p) {
    VLOG(3) << "fail to call Init";
    return nullptr;
  }
  anakin_predictor_p->get_executer().init(graph_);

  return std::move(cls);
}

#ifdef PADDLE_WITH_CUDA
template class PaddleInferenceAnakinPredictor<anakin::NV>;
#endif
template class PaddleInferenceAnakinPredictor<anakin::X86>;

// A factory to help create difference predictor.
template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
    const contrib::AnakinConfig &config) {
  VLOG(3) << "Anakin Predictor create.";
  if (config.target_type == contrib::AnakinConfig::NVGPU) {
#ifdef PADDLE_WITH_CUDA
    VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ].";
    std::unique_ptr<PaddlePredictor> x(
        new PaddleInferenceAnakinPredictor<anakin::NV>(config));
    return x;
#else
    LOG(ERROR) << "AnakinConfig::NVGPU could not used in ONLY-CPU environment";
    return nullptr;
#endif
  } else if (config.target_type == contrib::AnakinConfig::X86) {
    VLOG(3) << "Anakin Predictor create on [ Intel X86 ].";
    std::unique_ptr<PaddlePredictor> x(
        new PaddleInferenceAnakinPredictor<anakin::X86>(config));
    return x;
  } else {
    VLOG(3) << "Anakin Predictor create on unknown platform.";
    return nullptr;
  }
}

#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
template <typename Target>
using executor_t =
    anakin::Net<Target, anakin::saber::AK_FLOAT, anakin::Precision::FP32>;

template <typename Target>
void DisplayOpTimer(executor_t<Target> *net_executor, int epoch) {
  std::vector<float> op_time = net_executor->get_op_time();
  auto exec_funcs = net_executor->get_exec_funcs();
  auto op_param = net_executor->get_op_param();
  for (int i = 0; i < op_time.size(); i++) {
    LOG(INFO) << "name: " << exec_funcs[i].name
              << " op_type: " << exec_funcs[i].op_name
              << " op_param: " << op_param[i] << " time " << op_time[i] / epoch;
  }
  std::map<std::string, float> op_map;
  for (int i = 0; i < op_time.size(); i++) {
    auto it = op_map.find(op_param[i]);
    if (it != op_map.end())
      op_map[op_param[i]] += op_time[i];
    else
      op_map.insert(std::pair<std::string, float>(op_param[i], op_time[i]));
  }
  for (auto it = op_map.begin(); it != op_map.end(); ++it) {
    LOG(INFO) << it->first << "  " << (it->second) / epoch << " ms";
  }
}
#endif

template <typename Target>
PaddleInferenceAnakinPredictor<Target>::~PaddleInferenceAnakinPredictor() {
#ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER
  DisplayOpTimer<Target>(executor_p_, max_batch_size_);
#endif
  delete executor_p_;
  executor_p_ = nullptr;
}

}  // namespace paddle