ut_helper.h 7.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <gtest/gtest.h>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/inference/anakin/convert/op_converter.h"
#include "paddle/fluid/inference/anakin/engine.h"
#include "paddle/fluid/inference/analysis/helper.h"
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/platform/enforce.h"

using anakin::Precision;
using anakin::saber::X86;

namespace paddle {
namespace inference {
namespace anakin {

/*
 * Get a random float value between [low, high]
 */
float random(float low, float high) {
  static std::random_device rd;
  static std::mt19937 mt(rd());
  std::uniform_real_distribution<double> dist(low, high);
  return dist(mt);
}

void RandomizeTensor(framework::LoDTensor* tensor,
                     const platform::Place& place) {
  auto dims = tensor->dims();
  size_t num_elements = analysis::AccuDims(dims, dims.size());
  PADDLE_ENFORCE_GT(num_elements, 0);

  platform::CPUPlace cpu_place;
  framework::LoDTensor temp_tensor;
  temp_tensor.Resize(dims);
  auto* temp_data = temp_tensor.mutable_data<float>(cpu_place);

  for (size_t i = 0; i < num_elements; i++) {
    *(temp_data + i) = random(0., 1.);
  }

  TensorCopySync(temp_tensor, place, tensor);
}

/*
 * Help to validate the correctness between Fluid Op and the corresponding
 * anakin
 * layer.
 */
template <typename TargetT, ::anakin::Precision PrecisionT>
class AnakinConvertValidation {
  using AnakinNvEngineT = AnakinEngine<TargetT, PrecisionT>;

 public:
  AnakinConvertValidation() = delete;

  AnakinConvertValidation(const std::unordered_set<std::string>& parameters,
                          framework::Scope* scope,
                          const platform::DeviceContext& ctx,
                          bool use_gpu = true)
      : parameters_(parameters), scope_(scope), ctx_(ctx), use_gpu_(use_gpu) {
    engine_.reset(new AnakinEngine<TargetT, PrecisionT>(true));
  }

  // Declare a Variable as input with random initialization.
  void DeclInputVar(const std::string& name,
                    const std::vector<int> tensor_dims) {
    DeclVar(name, tensor_dims);
    // should decalre anakin input here.
  }

  void DeclParamVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
  }

  void DeclOutputVar(const std::string& name, const std::vector<int> dim_vec) {
    DeclVar(name, dim_vec);
    // should declare anakin output here.
  }

  void DeclVar(const std::string& name, const std::vector<int> dim_vec) {
    auto* x = scope_->Var(name);
    auto* x_tensor = x->GetMutable<framework::LoDTensor>();
    x_tensor->Resize(framework::make_ddim(dim_vec));
    RandomizeTensor(x_tensor, ctx_.GetPlace());

    std::vector<int64_t> dim_vec_int64;
    for (auto& ele : dim_vec) {
      dim_vec_int64.push_back(static_cast<int64_t>(ele));
    }

    // Add var_desc to block_desc
    auto* block_desc = program_desc_.MutableBlock(framework::kRootBlockIndex);

    auto* var_desc = block_desc->Var(name);
    var_desc->SetShape(dim_vec_int64);
  }

  void SetOp(const framework::proto::OpDesc& desc) {
    op_ = framework::OpRegistry::CreateOp(desc);
    op_desc_.reset(new framework::OpDesc(desc, nullptr));
    // should init anakin engine here.

    auto& block_desc = program_desc_.Block(framework::kRootBlockIndex);
    Singleton<AnakinOpConverter<TargetT, PrecisionT>>::Global().ConvertOp(
        desc, block_desc, parameters_, *scope_, engine_.get(),
        true /*test_mode*/);
    engine_->Freeze();

    std::map<std::string, std::vector<int>> temp_max_input_shape;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      auto& t = inference::analysis::GetFromScope<framework::LoDTensor>(*scope_,
                                                                        input);
      auto t_shape = framework::vectorize2int(t.dims());
      while (t_shape.size() < 4) {
        t_shape.push_back(1);
      }
      engine_->SetInputShape(input, t_shape);
      temp_max_input_shape[input] = t_shape;
    }
    engine_->SetMaxInputShape(temp_max_input_shape);
    engine_->Optimize();
    engine_->InitNet();
  }

  // We use the set 'neglected_output' here, because some Ops like batch norm,
  // the outputs specified in the op des are only used during training,
  // so we should neglect those output during inference.
  void Execute(int batch_size,
               std::unordered_set<std::string> neglected_output = {}) {
    // Execute Fluid Op
    op_->Run(*scope_, ctx_.GetPlace());

    std::map<std::string, framework::LoDTensor*> inputs;
    for (const auto& input : op_desc_->InputArgumentNames()) {
      if (parameters_.count(input)) continue;
      auto* var = scope_->FindVar(input);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      inputs.insert({input, tensor});
    }

    std::map<std::string, framework::LoDTensor*> outputs;
    std::vector<std::vector<float>> fluid_outputs;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> fluid_out;
      auto* var = scope_->FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx_, &fluid_out);
      fluid_outputs.push_back(fluid_out);

      outputs.insert({output, tensor});
    }

    if (!use_gpu_) {
      engine_->Execute(inputs, outputs);
    } else {
      cudaStream_t stream;
      PADDLE_ENFORCE_EQ(cudaStreamCreate(&stream), 0);
      engine_->Execute(inputs, outputs, stream);
    }

    int i_output = 0;
    for (const auto& output : op_desc_->OutputArgumentNames()) {
      if (neglected_output.count(output)) continue;
      std::vector<float> anakin_out;
      auto* var = scope_->FindVar(output);
      auto tensor = var->GetMutable<framework::LoDTensor>();
      framework::TensorToVector(*tensor, ctx_, &anakin_out);

      size_t anakin_out_size = anakin_out.size();
      auto fluid_out = fluid_outputs[i_output++];
      for (size_t i = 0; i < anakin_out_size; i++) {
        EXPECT_LT(std::abs(fluid_out[i] - anakin_out[i]), 1e-3);
      }
    }
  }

 private:
  std::unique_ptr<AnakinNvEngineT> engine_{nullptr};
  std::unique_ptr<framework::OperatorBase> op_;
  std::unique_ptr<framework::OpDesc> op_desc_;
  framework::ProgramDesc program_desc_;
  const std::unordered_set<std::string>& parameters_;
  framework::Scope* scope_;
  const platform::DeviceContext& ctx_;
  bool use_gpu_{true};
};

template class AnakinConvertValidation<::anakin::saber::NV,
                                       ::anakin::Precision::FP32>;
template class AnakinConvertValidation<::anakin::saber::X86,
                                       ::anakin::Precision::FP32>;

template class AnakinConvertValidation<::anakin::saber::NV,
                                       ::anakin::Precision::INT8>;
template class AnakinConvertValidation<::anakin::saber::X86,
                                       ::anakin::Precision::INT8>;
}  // namespace anakin
}  // namespace inference
}  // namespace paddle