mixed_vector.h 14.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <algorithm>
#include <initializer_list>
#include <memory>
#include <mutex>  // NOLINT
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/cow_ptr.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"

#include "glog/logging.h"

namespace paddle {
namespace framework {

#if defined(PADDLE_WITH_CUDA)
// Vector<T> implements the std::vector interface, and can get Data or
// MutableData from any place. The data will be synced implicitly inside.
template <typename T>
class Vector {
 public:
  using value_type = T;
  using iterator = typename std::vector<T>::iterator;
  using const_iterator = typename std::vector<T>::const_iterator;

 private:
  // The actual class to implement vector logic
  class VectorData {
   public:
    VectorData() : flag_(kDataInCPU) {}
    VectorData(size_t count, const T &value)
        : cpu_(count, value), flag_(kDataInCPU) {}
    VectorData(std::initializer_list<T> init) : cpu_(init), flag_(kDataInCPU) {}
    template <typename U>
    explicit VectorData(const std::vector<U> &dat)
        : cpu_(dat), flag_(kDataInCPU) {}
    ~VectorData() {}

    VectorData(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
    }

    VectorData &operator=(const VectorData &o) {
      o.ImmutableCPU();
      cpu_ = o.cpu_;
      flag_ = kDataInCPU;
      return *this;
    }

    T &operator[](size_t i) {
      MutableCPU();
      return cpu_[i];
    }

    const T &operator[](size_t i) const {
      ImmutableCPU();
      return cpu_[i];
    }

    size_t size() const { return cpu_.size(); }

    iterator begin() {
      MutableCPU();
      return cpu_.begin();
    }

    iterator end() {
      MutableCPU();
      return cpu_.end();
    }

    T &front() {
      MutableCPU();
      return cpu_.front();
    }

    T &back() {
      MutableCPU();
      return cpu_.back();
    }

    const_iterator begin() const {
      ImmutableCPU();
      return cpu_.begin();
    }

    const_iterator end() const {
      ImmutableCPU();
      return cpu_.end();
    }

    const T &back() const {
      ImmutableCPU();
      return cpu_.back();
    }

    T *data() { return &(*this)[0]; }

    const T *data() const { return &(*this)[0]; }

    const T &front() const {
      ImmutableCPU();
      return cpu_.front();
    }

    // assign this from iterator.
    // NOTE: the iterator must support `end-begin`
    template <typename Iter>
    void assign(Iter begin, Iter end) {
      MutableCPU();
      cpu_.assign(begin, end);
    }

    // push_back. If the previous capacity is not enough, the memory will
    // double.
    void push_back(T elem) {
      MutableCPU();
      cpu_.push_back(elem);
    }

    // extend a vector by iterator.
    // NOTE: the iterator must support end-begin
    template <typename It>
    void Extend(It begin, It end) {
      MutableCPU();
      auto out_it = std::back_inserter<std::vector<T>>(this->cpu_);
      std::copy(begin, end, out_it);
    }

    // resize the vector
    void resize(size_t size) {
      MutableCPU();
      cpu_.resize(size);
    }

    // get cuda ptr. immutable
    const T *CUDAData(platform::Place place) const {
      PADDLE_ENFORCE(platform::is_gpu_place(place),
                     "CUDA Data must on CUDA place");
      ImmutableCUDA(place);
      return reinterpret_cast<T *>(gpu_->ptr());
    }

    // get cuda ptr. mutable
    T *CUDAMutableData(platform::Place place) {
      const T *ptr = CUDAData(place);
      flag_ = kDirty | kDataInCUDA;
      return const_cast<T *>(ptr);
    }

    // clear
    void clear() {
      cpu_.clear();
      flag_ = kDirty | kDataInCPU;
    }

    size_t capacity() const { return cpu_.capacity(); }

    // reserve data
    void reserve(size_t size) const { cpu_.reserve(size); }

    // implicit cast operator. Vector can be cast to std::vector implicitly.
    operator std::vector<T>() const {
      ImmutableCPU();
      return cpu_;
    }

    bool operator==(const VectorData &other) const {
      ImmutableCPU();
      other.ImmutableCPU();
      return cpu_ == other.cpu_;
    }

    std::mutex &Mutex() const { return mtx_; }

    boost::optional<platform::CUDAPlace> CUDAPlace() const {
      return gpu_ == nullptr
                 ? boost::none
                 : boost::optional<platform::CUDAPlace>(
                       boost::get<platform::CUDAPlace>(gpu_->place()));
    }

   private:
    enum DataFlag {
      kDataInCPU = 0x01,
      kDataInCUDA = 0x02,
      // kDirty means the data has been changed in one device.
      kDirty = 0x10
    };

    void CopyToCPU() const {
      // COPY GPU Data To CPU
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(gpu_->place()));
      auto stream = dev_ctx->stream();
      void *src = gpu_->ptr();
      void *dst = cpu_.data();
      paddle::memory::Copy(platform::CPUPlace(), dst, CUDAPlace().get(), src,
                           gpu_->size(), stream);
      dev_ctx->Wait();
    }

    void MutableCPU() {
      if (IsInCUDA() && IsDirty()) {
        CopyToCPU();
      }
      flag_ = kDirty | kDataInCPU;
    }

    void ImmutableCUDA(platform::Place place) const {
      if (IsDirty()) {
        if (IsInCPU()) {
          CopyCPUDataToCUDA(place);
          UnsetFlag(kDirty);
          SetFlag(kDataInCUDA);
        } else if (IsInCUDA() && !(place == gpu_->place())) {
          PADDLE_THROW("This situation should not happen");
          // Still dirty
        } else {
          // Dirty && DataInCUDA && Device is same
          // Do nothing
        }
      } else {
        if (!IsInCUDA()) {
          // Even data is not dirty. However, data is not in CUDA. Copy data.
          CopyCPUDataToCUDA(place);
          SetFlag(kDataInCUDA);
        } else if (!(place == gpu_->place())) {
          PADDLE_THROW("This situation should not happen.");
        } else {
          // Not Dirty && DataInCUDA && Device is same
          // Do nothing.
        }
      }
    }

    void CopyCPUDataToCUDA(const platform::Place &place) const {
      void *src = cpu_.data();
      gpu_ = memory::Alloc(place, cpu_.size() * sizeof(T));
      void *dst = gpu_->ptr();
      auto *dev_ctx = static_cast<platform::CUDADeviceContext *>(
          platform::DeviceContextPool::Instance().Get(place));
      auto stream = dev_ctx->stream();
      paddle::memory::Copy(CUDAPlace().get(), dst, platform::CPUPlace(), src,
                           gpu_->size(), stream);
    }

    void ImmutableCPU() const {
      if (IsDirty() && !IsInCPU()) {  // If data has been changed in CUDA, or
                                      // CPU has no data.
        CopyToCPU();
        UnsetFlag(kDirty);
      }
      SetFlag(kDataInCPU);
    }

    void UnsetFlag(int flag) const { flag_ &= ~flag; }
    void SetFlag(int flag) const { flag_ |= flag; }

    bool IsDirty() const { return flag_ & kDirty; }

    bool IsInCUDA() const { return flag_ & kDataInCUDA; }

    bool IsInCPU() const { return flag_ & kDataInCPU; }

    mutable std::vector<T> cpu_;
    mutable paddle::memory::AllocationPtr gpu_;
    mutable int flag_;

    mutable std::mutex mtx_;
  };

 public:
  // Default ctor. Create empty Vector
  Vector() : m_(new VectorData()) {}

  // Fill vector with value. The vector size is `count`.
  explicit Vector(size_t count, const T &value = T())
      : m_(new VectorData(count, value)) {}

  // Ctor with init_list
  Vector(std::initializer_list<T> init) : m_(new VectorData(init)) {}

  // implicit cast from std::vector.
  template <typename U>
  Vector(const std::vector<U> &dat) : m_(new VectorData(dat)) {  // NOLINT
  }

  // Copy ctor
  Vector(const Vector<T> &other) { m_ = other.m_; }

  // Copy operator
  Vector<T> &operator=(const Vector<T> &other) {
    m_ = other.m_;
    return *this;
  }

  // Move ctor
  Vector(Vector<T> &&other) { m_ = std::move(other.m_); }

  // CPU data access method. Mutable.
  T &operator[](size_t i) { return (*m_.MutableData())[i]; }

  // CPU data access method. Immutable.
  const T &operator[](size_t i) const { return m_.Data()[i]; }

  // std::vector iterator methods. Based on CPU data access method
  size_t size() const { return m_.Data().size(); }

  iterator begin() { return m_.MutableData()->begin(); }

  iterator end() { return m_.MutableData()->end(); }

  T &front() { return m_.MutableData()->front(); }

  T &back() { return m_.MutableData()->back(); }

  const_iterator begin() const { return m_.Data().begin(); }

  const_iterator end() const { return m_.Data().end(); }

  const_iterator cbegin() const { return begin(); }

  const_iterator cend() const { return end(); }

  const T &back() const { return m_.Data().back(); }

  T *data() { return m_.MutableData()->data(); }

  const T *data() const { return m_.Data().data(); }

  const T &front() const { return m_.Data().front(); }
  // end of std::vector iterator methods

  // assign this from iterator.
  // NOTE: the iterator must support `end-begin`
  template <typename Iter>
  void assign(Iter begin, Iter end) {
    m_.MutableData()->assign(begin, end);
  }

  // push_back. If the previous capacity is not enough, the memory will
  // double.
  void push_back(T elem) { m_.MutableData()->push_back(elem); }

  // extend a vector by iterator.
  // NOTE: the iterator must support end-begin
  template <typename It>
  void Extend(It begin, It end) {
    m_.MutableData()->Extend(begin, end);
  }

  // resize the vector
  void resize(size_t size) {
    if (m_.Data().size() != size) {
      m_.MutableData()->resize(size);
    }
  }

  // get cuda ptr. immutable
  const T *CUDAData(platform::Place place) const {
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
      if (cuda_place == boost::none ||
          cuda_place == boost::get<platform::CUDAPlace>(place)) {
        return m_.Data().CUDAData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAData(place);
  }

  // get cuda ptr. mutable
  T *CUDAMutableData(platform::Place place) {
    {
      auto &mtx = m_.Data().Mutex();
      std::lock_guard<std::mutex> guard(mtx);
      auto cuda_place = m_.Data().CUDAPlace();
      if (cuda_place == boost::none ||
          cuda_place == boost::get<platform::CUDAPlace>(place)) {
        return m_.MutableData()->CUDAMutableData(place);
      }
    }
    // If m_ contains CUDAData in a different place. Detach manually.
    m_.Detach();
    return CUDAMutableData(place);
  }

  // clear
  void clear() { m_.MutableData()->clear(); }

  size_t capacity() const { return m_.Data().capacity(); }

  // reserve data
  void reserve(size_t size) { m_.Data().reserve(size); }

  // the unify method to access CPU or CUDA data. immutable.
  const T *Data(platform::Place place) const {
    if (platform::is_gpu_place(place)) {
      return CUDAData(place);
    } else {
      return data();
    }
  }

  // the unify method to access CPU or CUDA data. mutable.
  T *MutableData(platform::Place place) {
    if (platform::is_gpu_place(place)) {
      return CUDAMutableData(place);
    } else {
      return data();
    }
  }

  // implicit cast operator. Vector can be cast to std::vector implicitly.
  operator std::vector<T>() const { return m_.Data(); }

  bool operator==(const Vector<T> &other) const {
    if (size() != other.size()) return false;
    auto it1 = cbegin();
    auto it2 = other.cbegin();
    for (; it1 < cend(); ++it1, ++it2) {
      if (*it1 != *it2) {
        return false;
      }
    }
    return true;
  }

  const void *Handle() const { return &m_.Data(); }

 private:
  // Vector is an COW object.
  mutable details::COWPtr<VectorData> m_;
};

#else  // PADDLE_WITH_CUDA

template <typename T>
class CPUVector : public std::vector<T, std::allocator<T>> {
 public:
  CPUVector() : std::vector<T>() {}
  CPUVector(size_t count, const T &value = T())  // NOLINT
      : std::vector<T>(count, value) {}
  CPUVector(std::initializer_list<T> init) : std::vector<T>(init) {}
  CPUVector(const std::vector<T> &other) : std::vector<T>(other) {}  // NOLINT
  CPUVector(const CPUVector<T> &other) : std::vector<T>(other) {}
  CPUVector(CPUVector<T> &&other) : std::vector<T>(std::move(other)) {}
  CPUVector(std::vector<T> &&other)  // NOLINT
      : std::vector<T>(std::move(other)) {}
  CPUVector &operator=(const CPUVector &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }
  CPUVector &operator=(const std::vector<T> &other) {
    this->assign(other.begin(), other.end());
    return *this;
  }

  friend std::ostream &operator<<(std::ostream &os, const CPUVector<T> &other) {
    std::stringstream ss;
    for (auto v : other) {
      os << v << " ";
    }
    return os;
  }

  T &operator[](size_t id) { return this->at(id); }

  const T &operator[](size_t id) const { return this->at(id); }

  template <typename D>
  void Extend(const D &begin, const D &end) {
    this->reserve(this->size() + size_t(end - begin));
    this->insert(this->end(), begin, end);
  }

  const T *CUDAData(platform::Place place) const {
    PADDLE_THROW(
        "Vector::CUDAData() method is not supported in CPU-only version");
  }

  T *CUDAMutableData(platform::Place place) {
    PADDLE_THROW(
        "Vector::CUDAMutableData() method is not supported in CPU-only "
        "version");
  }

  const T *Data(platform::Place place) const {
    PADDLE_ENFORCE(
        platform::is_cpu_place(place),
        "Vector::Data() method is not supported when not in CPUPlace");
    return this->data();
  }

  T *MutableData(platform::Place place) {
    PADDLE_ENFORCE(
        platform::is_cpu_place(place),
        "Vector::MutableData() method is not supported when not in CPUPlace");
    return this->data();
  }

  const void *Handle() const { return static_cast<const void *>(this); }
};

template <typename T>
using Vector = CPUVector<T>;

#endif  // PADDLE_WITH_CUDA

};  // namespace framework
}  // namespace paddle