inplace_op_inference_test.cc 11.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <iostream>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimize_helper.h"
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/var_type_inference.h"

USE_PASS(inplace_pass);

namespace paddle {
namespace framework {

std::unique_ptr<ir::Pass> CreateInplacePass() {
  auto pass = ir::PassRegistry::Instance().Get("inplace_pass");
  pass->Set<bool>(ir::kUseCuda, new bool(true));
  return pass;
}

class NOP : public OperatorBase {
 public:
  NOP(const std::string& type, const VariableNameMap& inputs,
      const VariableNameMap& outputs, const AttributeMap& attrs)
      : OperatorBase(type, inputs, outputs, attrs) {}

 private:
  void RunImpl(const Scope& scope,
               const platform::Place& place) const override {}
};

class SingleOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddOutput("Out", "");
    AddComment("");
  }
};

class SingleGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("single_op_grad");
    op->SetInput("Out", OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    return std::unique_ptr<OpDesc>(op);
  }
};

class SingleOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->HasInput("X");
    ctx->HasOutput("Out");
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
  }
};

class SingleGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->HasInput(framework::GradVarName("Out"));
    ctx->HasOutput(framework::GradVarName("X"));
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Out"));
  }
};

class MultiOutOpMaker : public OpProtoAndCheckerMaker {
 public:
  void Make() {
    AddInput("X", "").AsDuplicable();
    AddInput("Y", "").AsDuplicable();
    AddInput("Z", "").AsDuplicable();
    AddOutput("Out", "");
    AddOutput("YOut", "");
    AddOutput("ZOut", "");
    AddOutput("NotReuseOut", "");
    AddComment("");
  }
};

class MultiOutShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", "Out");
    ctx->ShareDim("Y", "YOut");
    ctx->ShareDim("Z", "ZOut");
  }
};

class MultiGradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto* op = new framework::OpDesc();
    op->SetType("multi_out_grad");
    op->SetInput("X", Input("X"));
    op->SetOutput(framework::GradVarName("Y"), OutputGrad("YOut"));
    op->SetOutput(framework::GradVarName("X"), OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("Z"), OutputGrad("ZOut"));
    return std::unique_ptr<framework::OpDesc>(op);
  }
};

class MultiOutGradShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext* ctx) const override {
    ctx->SetOutputDim(framework::GradVarName("Y"),
                      ctx->GetInputDim(framework::GradVarName("YOut")));
    ctx->SetOutputDim(framework::GradVarName("X"),
                      ctx->GetInputDim(framework::GradVarName("Out")));
    ctx->SetOutputDim(framework::GradVarName("Z"),
                      ctx->GetInputDim(framework::GradVarName("ZOut")));
  }
};

class MultiOutInplaceInToOut : public framework::InplaceOpInference {
 public:
  std::unordered_map<std::string, std::string> operator()(
      const OpDesc& op_desc, bool use_cuda) const override {
    return std::unordered_map<std::string, std::string>{
        {"X", "Out"}, {"Y", "YOut"}, {"Z", "ZOut"},
    };
  }
};

class MultiOutGradInplaceInToOut : public framework::InplaceOpInference {
 public:
  std::unordered_map<std::string, std::string> operator()(
      const OpDesc& op_desc, bool use_cuda) const override {
    return std::unordered_map<std::string, std::string>{
        {framework::GradVarName("YOut"), framework::GradVarName("Y")},
        {framework::GradVarName("Out"), framework::GradVarName("X")},
        {framework::GradVarName("ZOut"), framework::GradVarName("Z")},
    };
  }
};

}  // namespace framework
}  // namespace paddle

namespace f = paddle::framework;
REGISTER_OPERATOR(single_op, f::NOP, f::SingleOpMaker, f::SingleGradOpMaker,
                  f::SingleOpInplaceInToOut, f::SingleOpShapeInference);
REGISTER_OPERATOR(single_op_grad, f::NOP, f::SingleOpInplaceInToOut,
                  f::SingleGradOpShapeInference);
REGISTER_OPERATOR(multi_out_op, f::NOP, f::MultiOutOpMaker, f::MultiGradOpMaker,
                  f::MultiOutInplaceInToOut, f::MultiOutShapeInference);
REGISTER_OPERATOR(multi_out_grad, f::NOP, f::MultiOutGradInplaceInToOut,
                  f::MultiOutGradShapeInference);

namespace paddle {
namespace framework {

void FakeSuccData(ProgramDesc* prog) {  // NOLINT
  prog->MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_a")->SetShape({32, 64, 128, 128});
  prog->MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_out");
  prog->MutableBlock(0)->Var("test2_out")->SetShape({64, 32, 128, 128});
}

void FakeNoInplaceData(ProgramDesc* prog) {  // NOLINT
  prog->MutableBlock(0)->Var("test2_a")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_a")->SetShape({32, 64, 128, 128});
  prog->MutableBlock(0)->Var("test2_b")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_c")->SetType(proto::VarType::LOD_TENSOR);
  prog->MutableBlock(0)->Var("test2_out");
  prog->MutableBlock(0)->Var("test2_out")->SetShape({64, 31, 128, 128});
}

ir::Node* GetNodeFromGraph(ir::Graph* g, std::string name) {
  ir::Node* op_node = nullptr;
  for (auto& item : g->Nodes()) {
    if (item->Name() == name) {
      op_node = item;
      break;
    }
  }
  return op_node;
}

std::unique_ptr<ir::Graph> test_SingleOpInplaceInToOut(
    std::unique_ptr<ir::Graph> g) {
  auto pass = CreateInplacePass();
  ir::Node* op_node = GetNodeFromGraph(g.get(), "single_op");
  EXPECT_NE(op_node, nullptr);
  pass->Apply(g.get());
  return g;
}

TEST(InferInplace, SingleOpInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("single_op");
  op->SetInput("X", {"test2_a", "test2_b", "test2_c"});
  op->SetOutput("Out", {"test2_out"});

  FakeSuccData(&prog);
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
  g = test_SingleOpInplaceInToOut(std::move(g));
  auto op_node = GetNodeFromGraph(g.get(), "single_op");

  EXPECT_EQ(op_node->outputs[0]->Name(), "test2_a");
}

TEST(InferInplace, SingleOpInplaceInToOutNoInplace) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("single_op");
  op->SetInput("X", {"test2_a", "test2_b", "test2_c"});
  op->SetOutput("Out", {"test2_out"});

  FakeNoInplaceData(&prog);
  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
  g = test_SingleOpInplaceInToOut(std::move(g));
  auto op_node = GetNodeFromGraph(g.get(), "single_op");

  EXPECT_EQ(op_node->outputs[0]->Name(), "test2_out");
}

TEST(InferInplace, MultiOutInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("multi_out_op");
  op->SetInput("X", {"a0", "a1"});
  op->SetInput("Y", {"b0"});
  op->SetInput("Z", {"c0", "c1"});
  op->SetOutput("Out", {"o0"});
  op->SetOutput("YOut", {"y0"});
  op->SetOutput("ZOut", {"z0"});

  prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("o0");
  prog.MutableBlock(0)->Var("y0");
  prog.MutableBlock(0)->Var("z0");
  prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("z0")->SetShape({32, 16, 1024, 1024});

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
  auto pass = CreateInplacePass();
  pass->Apply(g.get());
  auto op_node = GetNodeFromGraph(g.get(), "multi_out_op");
  ASSERT_TRUE(op_node != nullptr);
  EXPECT_EQ(op_node->outputs[0]->Name(), "a0");
  EXPECT_EQ(op_node->outputs[1]->Name(), "b0");
  EXPECT_EQ(op_node->outputs[2]->Name(), "c0");
}

TEST(InferInplace, MultiGradInplaceInToOut) {
  ProgramDesc prog;
  auto* op = prog.MutableBlock(0)->AppendOp();
  op->SetType("multi_out_grad");
  op->SetInput(GradVarName("Out"), {"o0"});
  op->SetInput(GradVarName("YOut"), {"y0"});
  op->SetInput(GradVarName("ZOut"), {"z0"});
  op->SetOutput(GradVarName("X"), {"a0", "a1"});
  op->SetOutput(GradVarName("Y"), {"b0"});
  op->SetOutput(GradVarName("Z"), {"c0", "c1"});

  prog.MutableBlock(0)->Var("a0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("b0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c0")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("c1")->SetType(proto::VarType::LOD_TENSOR);
  prog.MutableBlock(0)->Var("o0");
  prog.MutableBlock(0)->Var("y0");
  prog.MutableBlock(0)->Var("z0");
  prog.MutableBlock(0)->Var("a0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("b0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("c0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("o0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("y0")->SetShape({32, 16, 1024, 1024});
  prog.MutableBlock(0)->Var("z0")->SetShape({32, 15, 1024, 1024});

  std::unique_ptr<ir::Graph> g(new ir::Graph(prog));
  g->Set(ir::kMemOptSkipVars, new std::unordered_set<std::string>());
  auto pass = CreateInplacePass();
  pass->Apply(g.get());
  auto op_node = GetNodeFromGraph(g.get(), "multi_out_grad");
  ASSERT_TRUE(op_node != nullptr);
  EXPECT_EQ(op_node->outputs[0]->Name(), "o0");
  EXPECT_EQ(op_node->outputs[2]->Name(), "y0");
  EXPECT_EQ(op_node->outputs[3]->Name(), "c0");

  std::unordered_map<std::string, std::string> expects = {
      {"o0", "a0"}, {"y0", "b0"}, {"z0", "c0"},
  };
}

}  // namespace framework
}  // namespace paddle