garbage_collector.cc 4.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <deque>
#include <functional>
#include <memory>
#include <mutex>  // NOLINT
#include <utility>
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/framework/garbage_collector.h"

namespace paddle {
namespace framework {

DEFINE_double(
    eager_delete_tensor_gb, -1.0,
    "Memory size threshold (GB) when the garbage collector clear tensors."
    "Disabled when this value is less than 0");

DEFINE_bool(fast_eager_deletion_mode, true,
            "Fast eager deletion mode. If enabled, memory would release "
            "immediately without waiting GPU kernel ends.");

DEFINE_double(memory_fraction_of_eager_deletion, 1.0,
              "Fraction of eager deletion. If less than 1.0, all variables in "
              "the program would be sorted according to its memory size, and "
              "only the FLAGS_memory_fraction_of_eager_deletion of the largest "
              "variables would be deleted.");

GarbageCollector::GarbageCollector(const platform::Place &place,
                                   size_t max_memory_size)
    : max_memory_size_((std::max)(max_memory_size, static_cast<size_t>(1))) {
  garbages_.reset(new GarbageQueue());
  dev_ctx_ = platform::DeviceContextPool::Instance().Get(place);
}

CPUGarbageCollector::CPUGarbageCollector(const platform::CPUPlace &place,
                                         size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void CPUGarbageCollector::ClearCallback(const std::function<void()> &callback) {
  callback();
}

#ifdef PADDLE_WITH_CUDA
UnsafeFastGPUGarbageCollector::UnsafeFastGPUGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void UnsafeFastGPUGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback();
}

DefaultStreamGarbageCollector::DefaultStreamGarbageCollector(
    const platform::CUDAPlace &place, size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {}

void DefaultStreamGarbageCollector::Wait() const {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->WaitStreamCallback();
}

void DefaultStreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  static_cast<platform::CUDADeviceContext *>(this->dev_ctx_)
      ->AddStreamCallback(callback);
}

StreamGarbageCollector::StreamGarbageCollector(const platform::CUDAPlace &place,
                                               size_t max_memory_size)
    : GarbageCollector(place, max_memory_size) {
  platform::CUDADeviceGuard guard(place.device);
  PADDLE_ENFORCE(cudaStreamCreate(&stream_));
  callback_manager_.reset(new platform::StreamCallbackManager(stream_));
}

StreamGarbageCollector::~StreamGarbageCollector() {
  auto place = boost::get<platform::CUDAPlace>(this->dev_ctx_->GetPlace());
  platform::CUDADeviceGuard guard(place.device);
  PADDLE_ENFORCE(cudaStreamSynchronize(stream_));
  PADDLE_ENFORCE(cudaStreamDestroy(stream_));
}

cudaStream_t StreamGarbageCollector::stream() const { return stream_; }

void StreamGarbageCollector::Wait() const { callback_manager_->Wait(); }

void StreamGarbageCollector::ClearCallback(
    const std::function<void()> &callback) {
  callback_manager_->AddCallback(callback);
}
#endif

int64_t GetEagerDeletionThreshold() {
  return FLAGS_eager_delete_tensor_gb < 0
             ? -1
             : static_cast<int64_t>(FLAGS_eager_delete_tensor_gb *
                                    (static_cast<int64_t>(1) << 30));
}

bool IsFastEagerDeletionModeEnabled() { return FLAGS_fast_eager_deletion_mode; }

void SetEagerDeletionMode(double threshold, double fraction, bool fast_mode) {
  FLAGS_eager_delete_tensor_gb = threshold;
  FLAGS_memory_fraction_of_eager_deletion = fraction;
  FLAGS_fast_eager_deletion_mode = fast_mode;
}

double GetEagerDeletionMemoryFraction() {
  return FLAGS_memory_fraction_of_eager_deletion;
}

}  // namespace framework
}  // namespace paddle