executor.h 4.3 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/executor_gc_helper.h"
#include "paddle/fluid/framework/garbage_collector.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace framework {

struct ExecutorPrepareContext {
  ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id);

  ~ExecutorPrepareContext();

  void PrepareUnusedVars(const std::vector<std::string>& keep_vars,
                         bool force_disable_gc = false);

  const framework::ProgramDesc& prog_;
  const size_t block_id_;

  std::vector<std::unique_ptr<OperatorBase>> ops_;

  std::unordered_map<OperatorBase*, std::vector<std::string>> unused_vars_;
  bool force_disable_gc_{false};
};

class Executor {
 public:
  // TODO(dzhwinter) : Do not rely on this function, it will be removed
  explicit Executor(const platform::DeviceContext& device)
      : Executor(device.GetPlace()) {}

  explicit Executor(const platform::Place& place);

  /*
   * Close this Executor.
   * Calling this method will send complete messages to all pserver instances.
   */
  void Close();

  /* @Brief
   * Runtime evaluation of the given ProgramDesc under certain Scope
   *
   * @param
   *  ProgramDesc
   *  Scope
   */
  void Run(const ProgramDesc& prog, Scope* scope, int block_id,
           bool create_local_scope = true, bool create_vars = true,
           const std::vector<std::string>& skip_ref_cnt_vars =
               std::vector<std::string>(),
           bool force_disable_gc = false);

  // This API is very slow.
  void Run(const ProgramDesc& program, Scope* scope,
           std::map<std::string, const LoDTensor*>* feed_targets,
           std::map<std::string, LoDTensor*>* fetch_targets,
           bool create_local_scope = true, bool create_vars = true,
           const std::string& feed_holder_name = "feed",
           const std::string& fetch_holder_name = "fetch");

  static std::unique_ptr<ExecutorPrepareContext> Prepare(
      const ProgramDesc& program, int block_id,
      const std::vector<std::string>& skip_ref_cnt_vars =
          std::vector<std::string>(),
      bool force_disable_gc = false);

  static std::vector<std::shared_ptr<ExecutorPrepareContext>> Prepare(
      const ProgramDesc& program, const std::vector<int>& block_ids,
      const std::vector<std::vector<std::string>>& skip_ref_cnt_vars =
          std::vector<std::vector<std::string>>(),
      bool force_disable_gc = false);

  void CreateVariables(const ProgramDesc& pdesc, Scope* scope, int block_id);

  void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                          bool create_local_scope = true,
                          bool create_vars = true, bool keep_kids = false);

  // This API is very slow.
  void RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                          std::map<std::string, const LoDTensor*>* feed_targets,
                          std::map<std::string, LoDTensor*>* fetch_targets,
                          bool create_local_scope = true,
                          bool create_vars = true,
                          const std::string& feed_holder_name = "feed",
                          const std::string& fetch_holder_name = "fetch");

  void EnableMKLDNN(const ProgramDesc& program);

  void RunFromDataset(const ProgramDesc& main_program, Scope* scope,
                      Dataset* dataset, const std::string& trainer_desc_str);

 private:
  const platform::Place place_;
};

}  // namespace framework
}  // namespace paddle