op_handle_base.cc 6.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/op_handle_base.h"
#include <map>
#include <unordered_set>

namespace paddle {
namespace framework {
namespace details {
std::string OpHandleBase::DebugString() const {
  std::stringstream ss;
  ss << "(";
  for (auto *var : inputs_) {
    ss << var->DebugString() << ", ";
  }
  ss << ") --> (";
  for (auto *var : outputs_) {
    ss << var->DebugString() << ", ";
  }
  ss << ")\n";
  return ss.str();
}

OpHandleBase::~OpHandleBase() {
#ifdef PADDLE_WITH_CUDA
  for (auto &ev : events_) {
    PADDLE_ENFORCE(cudaEventDestroy(ev.second));
  }
#endif
}

void OpHandleBase::Run(bool use_cuda) {
#ifdef PADDLE_WITH_CUDA
  if (events_.empty() && use_cuda && dev_ctxes_.size() > 0) {
    for (auto &p : dev_ctxes_) {
      int dev_id = boost::get<platform::CUDAPlace>(p.first).device;
      PADDLE_ENFORCE(cudaSetDevice(dev_id));
      PADDLE_ENFORCE(
          cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming));
    }
    if (IsMultiDeviceTransfer() && dev_ctxes_.size() > 0) {
      for (auto &out_var : outputs_) {
        auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
        if (out_var_handle) {
          int dev_id =
              boost::get<platform::CUDAPlace>(out_var_handle->place()).device;
          out_var_handle->SetGenerateEvent(events_.at(dev_id));
        }
      }
    } else {
      PADDLE_ENFORCE_EQ(dev_ctxes_.size(), 1UL,
                        "%s should have only one dev_ctx.", Name());
      auto &place = dev_ctxes_.begin()->first;
      int dev_id = boost::get<platform::CUDAPlace>(place).device;
      for (auto &out_var : outputs_) {
        auto *out_var_handle = dynamic_cast<VarHandle *>(out_var);
        if (out_var_handle) {
          PADDLE_ENFORCE(
              platform::is_same_place(place, out_var_handle->place()),
              "The place of output(%s) is not consistent with the "
              "place of current op(%s).",
              out_var_handle->Name(), Name());
          out_var_handle->SetGenerateEvent(events_.at(dev_id));
        }
      }
    }
  }
#else

  PADDLE_ENFORCE(!use_cuda);
#endif

  RunImpl();
}

void OpHandleBase::RecordWaitEventOnCtx(platform::DeviceContext *waited_ctx) {
#ifdef PADDLE_WITH_CUDA
  PADDLE_ENFORCE_NOT_NULL(waited_ctx);
  if (platform::is_cpu_place(waited_ctx->GetPlace()) || events_.empty()) {
    for (auto &dev_ctx : dev_ctxes_) {
      PADDLE_ENFORCE_NOT_NULL(dev_ctx.second);
      dev_ctx.second->Wait();
    }
  } else {
    auto stream =
        static_cast<platform::CUDADeviceContext *>(waited_ctx)->stream();
    for (auto &ev : events_) {
      PADDLE_ENFORCE(cudaStreamWaitEvent(stream, ev.second, 0));
    }
  }
#else
  for (auto &dev_ctx : dev_ctxes_) {
    dev_ctx.second->Wait();
  }
#endif
}

void OpHandleBase::AddInput(VarHandleBase *in) {
  this->inputs_.emplace_back(in);
  node_->inputs.push_back(in->Node());
  in->AddOutput(this, this->Node());
}

void OpHandleBase::AddOutput(VarHandleBase *out) {
  outputs_.emplace_back(out);
  node_->outputs.push_back(out->Node());
  out->AddInput(this, this->Node());
}

void OpHandleBase::WaitInputVarGenerated() {
  for (auto in_var : inputs_) {
    if (NeedWait(in_var)) {
      // Dummy Variable is used to represent dependencies between operators, so
      // there doesn't add event for it.
      auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
      if (in_var_handle) {
        auto &place = in_var_handle->place();
        if (platform::is_gpu_place(place)) {
#ifdef PADDLE_WITH_CUDA
          auto stream =
              static_cast<platform::CUDADeviceContext *>(dev_ctxes_.at(place))
                  ->stream();
          PADDLE_ENFORCE(
              cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
          PADDLE_THROW("Doesn't compile the GPU.");
#endif
        }
        // There are nothing to do when the place is CPUPlace.
      }
    }
  }
}

void OpHandleBase::WaitInputVarGenerated(const platform::Place &place) {
  for (auto in_var : inputs_) {
    if (NeedWait(in_var)) {
      // Dummy Variable is used to represent dependencies between operators, so
      // there doesn't add event for it.
      auto *in_var_handle = dynamic_cast<VarHandle *>(in_var);
      if (in_var_handle) {
        if (platform::is_gpu_place(in_var_handle->place())) {
#ifdef PADDLE_WITH_CUDA
          auto stream = static_cast<platform::CUDADeviceContext *>(
                            dev_ctxes_.at(in_var_handle->place()))
                            ->stream();
          PADDLE_ENFORCE(
              cudaStreamWaitEvent(stream, in_var_handle->GetEvent(), 0));
#else
          PADDLE_THROW("Doesn't compile the GPU.");
#endif
        }
        // There are nothing to do when the place is CPUPlace.
      }
    }
  }
}

size_t OpHandleBase::NoDummyInputSize() const {
  size_t cnt = 0;
  for (auto *in : inputs_) {
    if (dynamic_cast<DummyVarHandle *>(in) == nullptr) {
      ++cnt;
    }
  }
  return cnt;
}

bool OpHandleBase::NeedWait(VarHandleBase *in_var) {
  return in_var && in_var->GeneratedOp();
}

void OpHandleBase::RunAndRecordEvent(const std::function<void()> &callback) {
#ifdef PADDLE_WITH_CUDA
  if (!events_.empty()) {  // Use event
    std::function<void()> method = callback;
    for (auto &p : dev_ctxes_) {
      method = [method, p, this]() {
        static_cast<platform::CUDADeviceContext *>(p.second)->RecordEvent(
            events_.at(boost::get<platform::CUDAPlace>(p.first).device),
            method);
      };
    }
    method();
  } else {
#endif
    callback();
#ifdef PADDLE_WITH_CUDA
  }
#endif
}

void OpHandleBase::RunAndRecordEvent(platform::Place p,
                                     const std::function<void()> &callback) {
#ifdef PADDLE_WITH_CUDA
  if (platform::is_cpu_place(p) || events_.empty()) {
    callback();
  } else {
    auto *ctx = dev_ctxes_.at(p);
    auto *cuda_ctx = static_cast<platform::CUDADeviceContext *>(ctx);
    cuda_ctx->RecordEvent(events_.at(boost::get<platform::CUDAPlace>(p).device),
                          callback);
  }
#else
  callback();
#endif
}

size_t OpHandleBase::NotReadyInputSize() const {
  std::unordered_set<VarHandleBase *> res;
  for (auto *var : inputs_) {
    if (var->GeneratedOp() != nullptr) {
      res.emplace(var);
    }
  }
  return res.size();
}

}  // namespace details
}  // namespace framework
}  // namespace paddle