build_strategy.cc 14.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

#include <glog/logging.h>
#include <memory>
#include <utility>
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/ir/memory_optimize_pass/memory_optimize_helper.h"
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_print_pass.h"

namespace paddle {
namespace framework {
namespace details {

static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
  // NOTE: ParallelGraph would execute this pass on each graph, so
  // don't need to append it here.
  return (!strategy.enable_sequential_execution_ &&
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
}

class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
    // Add a graph viz pass to record a graph.
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass("graph_viz_pass");
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), "_original_graph");
      viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    }

    // Note(zcd): record_skip_memory_opt_vars_pass should be the first pass.
    AppendPass("record_skip_memory_opt_vars_pass");

    if (strategy_.enable_sequential_execution_) {
      VLOG(5) << "Add sequential_execution_pass";
      AppendPass("sequential_execution_pass");
    }

    // Add op fusion.
    if (strategy.sync_batch_norm_) {
      AppendPass("sync_batch_norm_pass");
    }

    // Add op fusion.
    if (strategy.fuse_relu_depthwise_conv_) {
      VLOG(5) << "Add fuse_relu_depthwise_conv_pass";
      AppendPass("fuse_relu_depthwise_conv_pass");
    }

    // NOTE(dzhwinter): A note for automatical inplace.
    // 1. modify program desc passes should put
    // before inplace pass.
    // 2. manually configured inplace should put
    // before inplace_pass

    // Add automatically inplace.
    if (strategy_.enable_inplace_) {
      VLOG(5) << "Add inplace_pass";
      AppendPass("inplace_pass");
    }

    if (strategy_.fuse_elewise_add_act_ops_) {
      VLOG(5) << "Add fuse_elewise_add_act_pass";
      AppendPass("fuse_elewise_add_act_pass");
    }

    // for single card training, fuse_all_reduce_ops is unnecessary.
    // alloc_continuous_space_for_grad_pass should be before of MultiDevPass.
    if (strategy_.fuse_all_reduce_ops_) {
      VLOG(5) << "Add alloc_continuous_space_for_grad_pass";
      AppendPass("alloc_continuous_space_for_grad_pass");
    }

    if (strategy_.fuse_all_optimizer_ops_) {
      if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce ||
          strategy_.is_distribution_) {
        VLOG(3)
            << "Currently, fuse_all_optimizer_ops only works under AllReduce "
               "mode.";
        strategy_.fuse_all_optimizer_ops_ = false;
      } else {
        // NOTE: fuse_all_xx_ops will count the number of xx operator first,
        // if the number is zero, fuse_all_reduce_ops will do nothing.
        // Currently, only one type of optimization algorithm can be fused.
        VLOG(5) << "Add fuse_adam_op_pass";
        AppendPass("fuse_adam_op_pass");
        VLOG(5) << "Add fuse_sgd_op_pass";
        AppendPass("fuse_sgd_op_pass");
        VLOG(5) << "Add fuse_momentum_op_pass";
        AppendPass("fuse_momentum_op_pass");
      }
    }

    // Add a graph viz pass to record a graph.
    if (!strategy.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass("graph_viz_pass");
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), "_fused_graph");
      viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
    }

    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE(strategy_.trainer_id_ >= 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE((unsigned)(strategy_.trainer_id_) <
                         strategy_.trainers_endpoints_.size(),
                     "trainer_id_ < endpoints_ size");
    }
    VLOG(1) << "CollectiveContext:" << context->String();

    // NOTE(dzh): memory optimize should be a runtime pass.
    // However, after multi_devices_pass, VarHandle, OpHandle is
    // the de-fact IR, any reuse on Graph is meaningless.
    // A side-effect of that, memory optimize cannot forsee the fetched vars
    // , so fetchlist should be set persistable before call the Run interface.
    if (strategy_.memory_optimize_) {
      VLOG(5) << "Add memory_optimize_pass";
      AppendPass("memory_optimize_pass");
    }

    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    if (strategy_.cache_runtime_context_) {
      VLOG(5) << "Add runtime_context_cache_pass";
      AppendPass("runtime_context_cache_pass");
    }

    if (strategy_.cache_expected_kernel_) {
      VLOG(10) << "Add expected_kernel_cache_pass";
      AppendPass("expected_kernel_cache_pass");
    }

    AppendMultiDevPass(strategy_);

    if (strategy_.fuse_all_reduce_ops_) {
      // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
      // first, if the number is zero, fuse_all_reduce_ops will do nothing.
      VLOG(5) << "Add fuse_all_reduce_op_pass";
      AppendPass("fuse_all_reduce_op_pass");
    }

    // Add a graph print pass to record a graph with device info.
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto multi_devices_print_pass = AppendPass("multi_devices_print_pass");
      const std::string graph_path =
          string::Sprintf("%s%s", strategy_.debug_graphviz_path_.c_str(),
                          "_multi_devices_graph");
      multi_devices_print_pass->Set<std::string>(ir::kGraphvizPath,
                                                 new std::string(graph_path));
      multi_devices_print_pass->Set<ir::GraphvizSSAGraphPrinter>(
          "graph_printer", new ir::GraphvizSSAGraphPrinter);
    }

    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
    if (!strategy_.enable_parallel_graph_ &&
        (SeqOnlyAllReduceOps(strategy_) ||
         strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce)) {
      VLOG(5) << "Add all_reduce_deps_pass";
      AppendPass("all_reduce_deps_pass");
    }

    if (strategy_.remove_unnecessary_lock_) {
      VLOG(5) << "Add modify_op_lock_and_record_event_pass";
      AppendPass("modify_op_lock_and_record_event_pass");
    }

    // Verify that the graph is correct for multi-device executor.
    AppendPass("multi_devices_check_pass");
  }

  // Convert graph to run on multi-devices.
  void AppendMultiDevPass(const BuildStrategy &strategy) {
    ir::Pass *multi_devices_pass = nullptr;

    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
      VLOG(5)
          << "Add dist_multi_devices_pass, multi device parameter server mode";
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
      if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
        VLOG(5) << "Add all_reduce_mode_multi_devices_pass";
        multi_devices_pass =
            AppendPass("all_reduce_mode_multi_devices_pass").get();
      } else if (strategy.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
        VLOG(5) << "Add reduce_mode_multi_devices_pass";
        multi_devices_pass = AppendPass("reduce_mode_multi_devices_pass").get();
      } else {
        PADDLE_THROW("Unknown reduce strategy.");
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

 private:
  BuildStrategy strategy_;
};

std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
    bool finalize_strategy) const {
  if (is_finalized_) {
    return pass_builder_;
  }
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
  if (finalize_strategy) {
    is_finalized_ = true;
  }
  return pass_builder_;
}

bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
}

ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
                                const bool use_cuda,
                                platform::NCCLContextMap *nccl_ctxs) const {
#else
                                const bool use_cuda) const {
#endif
  VLOG(3) << "apply all passes";
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
    VLOG(3) << "BuildStrategy::Apply pass:" << pass->Type();
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
      pass->Erase(ir::kNRanks);
      pass->Set<size_t>(ir::kNRanks, new size_t(nranks));

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif
    } else if (pass->Type() == "alloc_continuous_space_for_grad_pass" ||
               pass->Type() == "fuse_adam_op_pass" ||
               pass->Type() == "fuse_sgd_op_pass" ||
               pass->Type() == "fuse_momentum_op_pass" ||
               pass->Type() == "fuse_all_reduce_op_pass") {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
      if (pass->Type() == "fuse_all_reduce_op_pass") {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
        platform::NCCLContextMap *nctx = use_cuda ? nccl_ctxs : nullptr;
        pass->Erase(kNCCLCtxs);
        pass->SetNotOwned<platform::NCCLContextMap>(kNCCLCtxs, nctx);
#endif
      }
    } else if (pass->Type() == "alloc_continuous_space_for_grad_pass") {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
    } else if (pass->Type() == "sequential_execution_pass") {
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
    } else if (pass->Type() == "all_reduce_deps_pass") {
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
    } else if (pass->Type() == "inplace_pass") {
      pass->Erase(ir::kUseCuda);
      pass->Set<bool>(ir::kUseCuda, new bool(use_cuda));
    }
    VLOG(3) << "Start Apply Pass " << pass->Type();
    graph = pass->Apply(graph);
    VLOG(3) << "Finish Apply Pass " << pass->Type();
  }
  VLOG(3) << "All Passes Applied";
  return graph;
}

}  // namespace details
}  // namespace framework
}  // namespace paddle

USE_PASS(sync_batch_norm_pass);
USE_PASS(fuse_relu_depthwise_conv_pass);
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_batch_merge_pass);
USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(all_reduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
USE_PASS(memory_optimize_pass);
USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);
USE_PASS(inplace_pass);
USE_PASS(lock_free_optimize_pass);
USE_PASS(alloc_continuous_space_for_grad_pass);
USE_PASS(graph_to_program_pass);
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
USE_PASS(fuse_momentum_op_pass);
USE_PASS(fuse_all_reduce_op_pass);
USE_PASS(runtime_context_cache_pass);
USE_PASS(expected_kernel_cache_pass);
USE_PASS(record_skip_memory_opt_vars_pass);