all_reduce_op_handle.cc 6.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/all_reduce_op_handle.h"
#include <algorithm>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/profiler.h"

// asynchronous nccl allreduce or synchronous issue:
// https://github.com/PaddlePaddle/Paddle/issues/15049
DEFINE_bool(
    sync_nccl_allreduce, true,
    "If set true, will call `cudaStreamSynchronize(nccl_stream)`"
    "after allreduce, this mode can get better performance in some scenarios.");

namespace paddle {
namespace framework {
namespace details {

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
                                     const std::vector<platform::Place> &places,
                                     const platform::NCCLContextMap *ctxs)
    : OpHandleBase(node),
      local_scopes_(local_scopes),
      places_(places),
      nccl_ctxs_(ctxs) {
  if (nccl_ctxs_) {
    for (auto &p : places_) {
      this->SetDeviceContext(p, nccl_ctxs_->DevCtx(p));
    }
  }
}
#else
AllReduceOpHandle::AllReduceOpHandle(ir::Node *node,
                                     const std::vector<Scope *> &local_scopes,
                                     const std::vector<platform::Place> &places)
    : OpHandleBase(node), local_scopes_(local_scopes), places_(places) {}
#endif

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
void AllReduceOpHandle::RunAllReduceFuncs(
    const std::vector<std::function<void()>> &all_reduce_calls) {
  this->RunAndRecordEvent([&] {
    if (all_reduce_calls.size() == 1UL) {
      // Do not use NCCLGroup when manage NCCL by per thread per device
      all_reduce_calls[0]();
    } else {
      platform::NCCLGroupGuard guard;
      for (auto &call : all_reduce_calls) {
        call();
      }
    }
  });

  if (FLAGS_sync_nccl_allreduce) {
    for (auto &p : places_) {
      int dev_id = boost::get<platform::CUDAPlace>(p).device;
      auto &nccl_ctx = nccl_ctxs_->at(dev_id);
      auto stream = nccl_ctx.stream();
      cudaError_t e_sync = cudaStreamSynchronize(stream);
      if (e_sync != 0) {
        LOG(FATAL) << "cudaStreamSynchronize " << cudaGetErrorString(e_sync);
      }

      cudaError_t e_get = cudaGetLastError();
      if (e_get != 0) {
        LOG(FATAL) << "cudaGetLastError  " << cudaGetErrorString(e_get)
                   << " errno:" << e_get;
      }
    }
  }
}
#endif

void AllReduceOpHandle::RunImpl() {
  platform::RecordEvent record_event(Name());

  WaitInputVarGenerated();

  auto in_var_handles = DynamicCast<VarHandle>(this->Inputs());
  auto out_var_handles = DynamicCast<VarHandle>(this->Outputs());
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The NoDummyInputSize should be equal to the number of places.");
  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), out_var_handles.size(),
      "The NoDummyInputSize and NoDummyOutputSize should be equal.");

  std::vector<const LoDTensor *> lod_tensors;
  for (size_t i = 0; i < local_scopes_.size(); ++i) {
    auto *s = local_scopes_[i];
    auto &local_scope = *s->FindVar(kLocalExecScopeName)->Get<Scope *>();
    auto &lod_tensor =
        local_scope.FindVar(in_var_handles[i]->name())->Get<LoDTensor>();
    lod_tensors.emplace_back(&lod_tensor);
    VLOG(10) << "place:" << i << ", input_name:" << in_var_handles[i]->name()
             << ", out_name:" << out_var_handles[i]->name();
    PADDLE_ENFORCE_EQ(in_var_handles[i]->name(), out_var_handles[i]->name(),
                      "The name of input and output should be equal.");
  }

  if (platform::is_gpu_place(lod_tensors[0]->place())) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
    PADDLE_ENFORCE(nccl_ctxs_, "nccl_ctxs should not be nullptr.");
    int dtype = -1;
    size_t numel = 0;
    std::vector<std::function<void()>> all_reduce_calls;
    for (size_t i = 0; i < local_scopes_.size(); ++i) {
      auto &p = places_[i];
      auto &lod_tensor = *lod_tensors[i];
      void *buffer = const_cast<void *>(lod_tensor.data<void>());

      if (dtype == -1) {
        dtype = platform::ToNCCLDataType(lod_tensor.type());
      }

      if (numel == 0) {
        numel = static_cast<size_t>(lod_tensor.numel());
      }

      int dev_id = boost::get<platform::CUDAPlace>(p).device;
      auto &nccl_ctx = nccl_ctxs_->at(dev_id);
      auto stream = nccl_ctx.stream();
      auto comm = nccl_ctx.comm_;

      VLOG(10) << "before all reduce buffer:" << buffer << ", numel:" << numel
               << ", dev_id:" << dev_id << ", dtype:" << dtype
               << ", place:" << p;

      all_reduce_calls.emplace_back([=] {
        PADDLE_ENFORCE(platform::dynload::ncclAllReduce(
            buffer, buffer, numel, static_cast<ncclDataType_t>(dtype), ncclSum,
            comm, stream));
      });
    }
    RunAllReduceFuncs(all_reduce_calls);
#else
    PADDLE_THROW("Not compiled with CUDA");
#endif
  } else {  // Special handle CPU only Operator's gradient. Like CRF
    auto &trg = *this->local_scopes_[0]
                     ->FindVar(kLocalExecScopeName)
                     ->Get<Scope *>()
                     ->FindVar(out_var_handles[0]->name())
                     ->GetMutable<framework::LoDTensor>();

    // Reduce All Tensor to trg in CPU
    ReduceLoDTensor func(lod_tensors, &trg);
    VisitDataType(lod_tensors[0]->type(), func);

    for (size_t i = 1; i < local_scopes_.size(); ++i) {
      auto &scope =
          *local_scopes_[i]->FindVar(kLocalExecScopeName)->Get<Scope *>();
      auto &p = places_[i];
      auto *var = scope.FindVar(out_var_handles[i]->name());
      auto *dev_ctx = dev_ctxes_.at(p);

      RunAndRecordEvent(p, [&trg, var, dev_ctx, p] {
        auto &tensor_gpu = *var->GetMutable<framework::LoDTensor>();
        auto &tensor_cpu = trg;
        TensorCopy(tensor_cpu, p, *dev_ctx, &tensor_gpu);
      });
    }
  }
}

std::string AllReduceOpHandle::Name() const { return "all_reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle