pool2d_op.cc 8.6 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
16
#include "paddle/fluid/inference/tensorrt/plugin/pool_op_plugin.h"
N
nhzlx 已提交
17 18 19 20 21

namespace paddle {
namespace inference {
namespace tensorrt {

22 23 24 25
inline void DealCeilMode(const nvinfer1::Dims &input_shape,
                         std::vector<int> ksize, std::vector<int> strides,
                         std::vector<int> paddings, nvinfer1::DimsHW *pre_pad,
                         nvinfer1::DimsHW *post_pad, int input_dims) {
N
nhzlx 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  int input_height = input_shape.d[input_dims - 2];
  int input_width = input_shape.d[input_dims - 1];
  int floor_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0]) / strides[0] + 1;
  int ceil_h_output_size =
      (input_height - ksize[0] + 2 * paddings[0] + strides[0] - 1) /
          strides[0] +
      1;

  int floor_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1]) / strides[1] + 1;
  int ceil_w_output_size =
      (input_width - ksize[1] + 2 * paddings[1] + strides[1] - 1) / strides[1] +
      1;
  if (floor_h_output_size != ceil_h_output_size) {
    post_pad->h() = strides[0] - 1;
  }

  if (floor_w_output_size != ceil_w_output_size) {
    post_pad->w() = strides[1] - 1;
  }
}

N
nhzlx 已提交
49 50 51 52 53
/*
 * Pool2dOp, IPoolingLayer in TRT. This Layer doesn't has weights.
 */
class Pool2dOpConverter : public OpConverter {
 public:
N
nhzlx 已提交
54 55
  void operator()(const framework::proto::OpDesc &op,
                  const framework::Scope &scope, bool test_mode) override {
M
minqiyang 已提交
56
    VLOG(4)
N
nhzlx 已提交
57 58
        << "convert a fluid pool2d op to tensorrt pool2d layer without bias";
    framework::OpDesc op_desc(op, nullptr);
59 60 61 62 63 64 65 66 67
    PADDLE_ENFORCE_EQ(op_desc.Input("X").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 input, but got %d input.",
                          op_desc.Input("X").size()));
    PADDLE_ENFORCE_EQ(op_desc.Output("Out").size(), 1UL,
                      platform::errors::InvalidArgument(
                          "TRT Pool2d expect 1 Output, but got %d output.",
                          op_desc.Output("Out").size()));

N
nhzlx 已提交
68 69 70 71
    auto *input1 = engine_->GetITensor(op_desc.Input("X")[0]);
    nvinfer1::Dims input_shape = input1->getDimensions();
    int input_dims = input_shape.nbDims;

72 73
    bool global_pooling =
        BOOST_GET_CONST(bool, op_desc.GetAttr("global_pooling"));
N
nhzlx 已提交
74
    std::string pool_type =
75
        BOOST_GET_CONST(std::string, op_desc.GetAttr("pooling_type"));
N
nhzlx 已提交
76
    std::vector<int> ksize =
77
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("ksize"));
N
nhzlx 已提交
78
    std::vector<int> strides =
79
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("strides"));
N
nhzlx 已提交
80
    std::vector<int> paddings =
81 82
        BOOST_GET_CONST(std::vector<int>, op_desc.GetAttr("paddings"));
    bool ceil_mode = BOOST_GET_CONST(bool, op_desc.GetAttr("ceil_mode"));
83 84
    bool adaptive = false;
    if (op_desc.HasAttr("adaptive"))
85
      adaptive = BOOST_GET_CONST(bool, op_desc.GetAttr("adaptive"));
N
nhzlx 已提交
86

N
nhzlx 已提交
87
    nvinfer1::PoolingType nv_pool_type = nvinfer1::PoolingType::kMAX;
88 89
    plugin::PoolPlugin::PoolType plugin_pool_type =
        plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
90
    if (pool_type == "max") {
N
nhzlx 已提交
91
      nv_pool_type = nvinfer1::PoolingType::kMAX;
92
      plugin_pool_type = plugin::PoolPlugin::PoolType::max;
N
nhzlx 已提交
93
    } else if (pool_type == "avg") {
N
nhzlx 已提交
94
      nv_pool_type = nvinfer1::PoolingType::kAVERAGE;
95
      plugin_pool_type = plugin::PoolPlugin::PoolType::avg;
N
nhzlx 已提交
96
    } else {
97 98 99
      PADDLE_THROW(platform::errors::Fatal(
          "Wrong pool op type, the trt do not support the %s pool type.",
          pool_type));
N
nhzlx 已提交
100 101
    }

N
nhzlx 已提交
102 103 104 105 106 107
    nvinfer1::DimsHW nv_ksize(ksize[0], ksize[1]);
    nvinfer1::DimsHW nv_strides(strides[0], strides[1]);
    nvinfer1::DimsHW nv_paddings(paddings[0], paddings[1]);

    nvinfer1::ILayer *layer = nullptr;

108 109 110
    if (op_desc.HasAttr("enable_int8")) {
#if IS_TRT_VERSION_GE(5000)
      CHECK(op_desc.HasAttr("X_scale"));
111
      float input_scale = BOOST_GET_CONST(float, op_desc.GetAttr("X_scale"));
112 113 114 115
      engine_->SetTensorDynamicRange(input1, input_scale);
#endif
    }

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    if (engine_->with_dynamic_shape()) {
      if (!adaptive && pool_type == "max" && !global_pooling && !ceil_mode) {
        auto *pool_layer = TRT_ENGINE_ADD_LAYER(engine_, Pooling, *input1,
                                                nv_pool_type, nv_ksize);
        pool_layer->setStride(nv_strides);
        pool_layer->setPadding(nv_paddings);
        layer = pool_layer;
      } else {
#if IS_TRT_VERSION_GE(6000)
        plugin::PoolPluginDynamic *plugin =
            new plugin::PoolPluginDynamic(ceil_mode, pool_type, adaptive, ksize,
                                          strides, paddings, global_pooling);
        layer = engine_->AddPluginV2(&input1, 1, plugin);
#endif
      }
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
      if (test_mode) {
        engine_->DeclareOutput(output_name);
      }
      return;
    }

N
nhzlx 已提交
141 142 143 144 145 146
    if (global_pooling == true) {
      nv_ksize.d[0] = input_shape.d[input_dims - 2];
      nv_ksize.d[1] = input_shape.d[input_dims - 1];
      auto *layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
147 148 149
      PADDLE_ENFORCE_NOT_NULL(
          layer, platform::errors::Fatal(
                     "trt pool layer in converter could not be created."));
N
nhzlx 已提交
150 151 152 153
      auto output_name = op_desc.Output("Out")[0];
      layer->setName(("pool2d (Output: " + output_name + ")").c_str());
      layer->getOutput(0)->setName(output_name.c_str());
      engine_->SetITensor(output_name, layer->getOutput(0));
N
nhzlx 已提交
154
      if (test_mode) {
N
nhzlx 已提交
155
        engine_->DeclareOutput(output_name);
156
      }
N
nhzlx 已提交
157 158
      return;
    }
159

160
    if (!adaptive && pool_type == "max") {
N
nhzlx 已提交
161 162 163 164
      // Under ceil mode, the pre_pad and post_pad are used to
      // record the the padding size. In some ceil mode cases,
      // we do not need padding, so we initialize the two vars to 0.

N
nhzlx 已提交
165 166
      nvinfer1::DimsHW pre_pad(0, 0);
      nvinfer1::DimsHW post_pad(0, 0);
N
nhzlx 已提交
167 168 169 170 171 172 173 174
      if (ceil_mode) {
        // If ceil mode is true, we will pad the appropriate size to the input.
        DealCeilMode(input_shape, ksize, strides, paddings, &pre_pad, &post_pad,
                     input_dims);
        auto *pad_layer = TRT_ENGINE_ADD_LAYER(
            engine_, Padding, *const_cast<nvinfer1::ITensor *>(input1), pre_pad,
            post_pad);
        PADDLE_ENFORCE_NOT_NULL(
175 176 177
            pad_layer,
            platform::errors::Fatal(
                "pad layer in poolOp converter could not be created."));
N
nhzlx 已提交
178 179 180 181 182
        input1 = pad_layer->getOutput(0);
      }
      auto *pool_layer = TRT_ENGINE_ADD_LAYER(
          engine_, Pooling, *const_cast<nvinfer1::ITensor *>(input1),
          nv_pool_type, nv_ksize);
183 184 185
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer, platform::errors::Fatal(
                          "trt pool layer in converter could not be created."));
N
nhzlx 已提交
186 187 188 189 190 191 192 193 194 195
      pool_layer->setStride(nv_strides);
      pool_layer->setPadding(nv_paddings);
      layer = pool_layer;
    } else {
      // Average pooling needs to exclude the padding pixels from the average
      // mean.
      // It is not supported well by TRT, we use a plugin here.
      std::vector<int> input_shape_v;
      for (int i = 0; i < input_dims; i++) {
        input_shape_v.push_back(input_shape.d[i]);
196
      }
197 198 199 200
      plugin::PoolPlugin *plugin =
          new plugin::PoolPlugin(ceil_mode, plugin_pool_type, adaptive, ksize,
                                 strides, paddings, input_shape_v);
      auto *pool_layer = engine_->AddPlugin(&input1, 1, plugin);
201 202 203 204
      PADDLE_ENFORCE_NOT_NULL(
          pool_layer,
          platform::errors::Fatal(
              "trt pool plugin layer in converter could not be created."));
205
      layer = pool_layer;
206
    }
N
nhzlx 已提交
207 208

    auto output_name = op_desc.Output("Out")[0];
209
    RreplenishLayerAndOutput(layer, "pool2d", {output_name}, test_mode);
N
nhzlx 已提交
210 211 212 213 214 215 216 217 218
  }
};

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle

USE_OP(pool2d);
REGISTER_TRT_OP_CONVERTER(pool2d, Pool2dOpConverter);