margin_rank_loss_op.cc 6.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yibing Liu 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yibing Liu 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yibing Liu 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yibing Liu 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/margin_rank_loss_op.h"
S
sneaxiy 已提交
16
#include <memory>
17
#include "paddle/fluid/platform/enforce.h"
Y
Yibing Liu 已提交
18 19 20 21 22 23

namespace paddle {
namespace operators {

class MarginRankLossOp : public framework::OperatorWithKernel {
 public:
24
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
25

Y
Yibing Liu 已提交
26
  void InferShape(framework::InferShapeContext *ctx) const override {
Y
Yibing Liu 已提交
27
    // input check
28 29 30 31 32 33
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
                   "margin_rank_loss");
    OP_INOUT_CHECK(ctx->HasInput("X1"), "Input", "X1", "margin_rank_loss");
    OP_INOUT_CHECK(ctx->HasInput("X2"), "Input", "X2", "margin_rank_loss");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "margin_rank_loss");

34 35 36
    auto label_dims = ctx->GetInputDim("Label");
    auto x1_dims = ctx->GetInputDim("X1");
    auto x2_dims = ctx->GetInputDim("X2");
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

    PADDLE_ENFORCE_EQ(
        label_dims, x1_dims,
        platform::errors::InvalidArgument(
            "The shape of Input(Label) shape should equals the shape of "
            "Input(X1). Received: Input(Label)'s shape: [%s], Input(X1)'s "
            "shape: [%s].",
            label_dims, x1_dims));
    PADDLE_ENFORCE_EQ(
        x1_dims, x2_dims,
        platform::errors::InvalidArgument(
            "The shape of Input(X1) shape should equals the shape of "
            "Input(X2). Received: Input(X1)'s shape: [%s], Input(X2)'s shape: "
            "[%s].",
            x1_dims, x2_dims));
    PADDLE_ENFORCE_EQ(
        label_dims.size(), 2,
        platform::errors::InvalidArgument(
            "The dimensions of Input(Label) should be 2. Received: "
            "the shape of Input(Label): [%s], the dimensions of Input(Label): "
            "%d.",
            label_dims, label_dims.size()));
    PADDLE_ENFORCE_EQ(label_dims[1], 1,
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Lable) should be 1"
                          "Received: the shape of Input(Label): [%s].",
                          label_dims));
64 65
    ctx->SetOutputDim("Activated", label_dims);
    ctx->SetOutputDim("Out", label_dims);
Y
Yibing Liu 已提交
66 67 68
  }
};

69
template <typename T>
Y
Yibing Liu 已提交
70 71
class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
72
  void Make() override {
73
    AddInput("X1",
Y
Yibing Liu 已提交
74 75
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "one item X1 to be ranked, from pairwise ranking model.");
76
    AddInput("X2",
Y
Yibing Liu 已提交
77 78
             "(2-D tensor with shape [batch_size x 1]) The score for "
             "another item X2 to be ranked, from pairwise ranking model.");
79
    AddInput("Label",
80 81 82
             "(2-D tensor with shape [batch_size x 1]) "
             "The label indicating X1 ranked higher than X2 or not, "
             "can only be +1 or -1.");
Y
Yibing Liu 已提交
83
    AddOutput("Activated",
84 85
              "(2-D tensor with shape [batch_size x 1]) Intermediate tensor "
              "to indicate whether each element of Output(Out) is activated.")
Y
Yibing Liu 已提交
86
        .AsIntermediate();
87
    AddOutput("Out",
Y
Yibing Liu 已提交
88
              "(2-D tensor with shape [batch_size x 1]) "
89
              "The output loss of MarginRankLoss operator.");
K
kexinzhao 已提交
90 91
    AddAttr<T>("margin", "(scalar, default 0) Margin for MarginRankLossOp.")
        .SetDefault(static_cast<T>(0));
92
    AddComment(R"DOC(
K
kexinzhao 已提交
93
MarginRankLoss Operator.
94

K
kexinzhao 已提交
95
This operator measures the loss given a pair of training sample
Y
Yibing Liu 已提交
96
{`X1`, `X2`} and the `Label` with attribute `margin`, where `Label = +1` 
K
kexinzhao 已提交
97 98
indicating X1 is ranked higher than `X2` and `Label = -1` otherwise. The loss 
is calculated as:
99

K
kexinzhao 已提交
100
$loss(X1, X2, Label) = \max(0, -Label * (X1 - X2) + margin)$
Y
Yibing Liu 已提交
101

K
kexinzhao 已提交
102
The attribute `margin` here helps make the predictions more robust.
Y
Yibing Liu 已提交
103 104
Denote the item ranked higher as the positive sample, otherwise the negative 
sample. If the score of the two samples satisfies 
Y
Yibing Liu 已提交
105

K
kexinzhao 已提交
106
$positive sample - negative sample < margin$
Y
Yibing Liu 已提交
107

K
kexinzhao 已提交
108 109
the pair of samples will contribute to the final loss, which will backpropagate 
and train the ranking model to enlarge the difference between the two scores.
110 111 112

For batch input with size `batch_size`, `X1`, `X2` and `Label`
all have the same shape [batch_size x 1].
Y
Yibing Liu 已提交
113 114 115 116 117 118 119

)DOC");
  }
};

class MarginRankLossGradOp : public framework::OperatorWithKernel {
 public:
120
  using framework::OperatorWithKernel::OperatorWithKernel;
Y
Yibing Liu 已提交
121

Y
Yibing Liu 已提交
122
  void InferShape(framework::InferShapeContext *ctx) const override {
123 124 125 126 127 128 129 130 131 132 133
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label",
                   "margin_rank_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "margin_rank_loss_grad");
    OP_INOUT_CHECK(ctx->HasInput("Activated"), "Input", "Activated",
                   "margin_rank_loss_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X1")), "Output",
                   framework::GradVarName("X1"), "margin_rank_loss_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X2")), "Output",
                   framework::GradVarName("X2"), "margin_rank_loss_grad");

134 135 136
    auto dims = ctx->GetInputDim("Label");
    ctx->SetOutputDim(framework::GradVarName("X1"), dims);
    ctx->SetOutputDim(framework::GradVarName("X2"), dims);
Y
Yibing Liu 已提交
137 138 139
  }
};

H
hong 已提交
140 141
template <typename T>
class MarginRankLossGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
142
 public:
H
hong 已提交
143
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
144 145

 protected:
146
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
147
    op->SetType("margin_rank_loss_grad");
H
hong 已提交
148 149 150 151 152 153
    op->SetInput("Activated", this->Output("Activated"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetInput("Label", this->Input("Label"));
    op->SetOutput(framework::GradVarName("X1"), this->InputGrad("X1"));
    op->SetOutput(framework::GradVarName("X2"), this->InputGrad("X2"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
154 155 156
  }
};

Y
Yibing Liu 已提交
157 158 159 160
}  // namespace operators
}  // namespace paddle
namespace ops = paddle::operators;

Y
Yang Yang 已提交
161 162
REGISTER_OPERATOR(margin_rank_loss, ops::MarginRankLossOp,
                  ops::MarginRankLossOpMaker<float>,
H
hong 已提交
163 164
                  ops::MarginRankLossGradMaker<paddle::framework::OpDesc>,
                  ops::MarginRankLossGradMaker<paddle::imperative::OpBase>);
165
REGISTER_OPERATOR(margin_rank_loss_grad, ops::MarginRankLossGradOp);
Y
Yibing Liu 已提交
166 167
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss,
Q
QI JUN 已提交
168
    ops::MarginRankLossKernel<paddle::platform::CPUDeviceContext, float>);
Y
Yibing Liu 已提交
169 170
REGISTER_OP_CPU_KERNEL(
    margin_rank_loss_grad,
Q
QI JUN 已提交
171
    ops::MarginRankLossGradKernel<paddle::platform::CPUDeviceContext, float>);