loss.py 91.6 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
import paddle
17
from ...fluid.data_feeder import check_variable_and_dtype
18

19
# TODO: define loss functions of neural network
20
import numpy as np
21 22 23
import paddle
import paddle.fluid as fluid
from ...fluid.layers.nn import _elementwise_op_in_dygraph
Z
zhiboniu 已提交
24 25 26
from ...fluid.layers import dice_loss  # noqa: F401
from ...fluid.layers import log_loss  # noqa: F401
from ...fluid.layers import npair_loss  # noqa: F401
27
from ...tensor.manipulation import reshape
Z
zhiboniu 已提交
28 29
from ...fluid.layers import softmax_with_cross_entropy as fluid_softmax_with_cross_entropy
from ...fluid.layers import square_error_cost  # noqa: F401
30

Z
zhiboniu 已提交
31
from ...fluid.layers import edit_distance  # noqa: F401
32
from ...fluid.layers import huber_loss
33
from ...fluid.layer_helper import LayerHelper
34
from ...fluid.framework import _varbase_creator
35
from ...static import Variable
36
from paddle.utils import deprecated
W
wanghuancoder 已提交
37
from paddle import _C_ops
Z
zhiboniu 已提交
38
from paddle import in_dynamic_mode
H
hong 已提交
39
from paddle.framework import core, _in_eager_mode
40

41 42
__all__ = []

43

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
def binary_cross_entropy(input, label, weight=None, reduction='mean',
                         name=None):
    """
    This op measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:

    If :attr:`weight` is set, the loss is:

    .. math::
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`weight` is None, the loss is:

    .. math::
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(Out)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(Out)

    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
    should be numbers between 0 and 1.

    Parameters:
        input (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``input``
            should always be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``input``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
            is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.

    Examples:
        .. code-block:: python

            import paddle

104 105
            input = paddle.to_tensor([0.5, 0.6, 0.7], 'float32')
            label = paddle.to_tensor([1.0, 0.0, 1.0], 'float32')
106
            output = paddle.nn.functional.binary_cross_entropy(input, label)
N
Noel 已提交
107
            print(output)  # [0.65537095]
108 109 110 111 112 113 114 115

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy should be 'sum', "
            "'mean' or 'none', but received %s, which is not allowed." %
            reduction)

Z
zhiboniu 已提交
116
    if in_dynamic_mode():
H
hong 已提交
117 118 119 120
        if _in_eager_mode():
            out = _C_ops.final_state_bce_loss(input, label)
        else:
            out = _C_ops.bce_loss(input, label)
121
        if weight is not None:
W
wanghuancoder 已提交
122
            out = _C_ops.elementwise_mul(out, weight, 'axis', -1)
123 124

        if reduction == 'sum':
W
wanghuancoder 已提交
125 126
            return _C_ops.reduce_sum(out, 'dim', [0], 'keep_dim', False,
                                     "reduce_all", True)
127
        elif reduction == 'mean':
W
wanghuancoder 已提交
128
            return _C_ops.mean(out)
129 130 131 132 133 134 135 136
        else:
            return out

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'binary_cross_entropy')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'binary_cross_entropy')

137
    sub_name = name if weight is None and reduction == 'none' else None
138 139 140 141 142 143 144 145 146
    helper = LayerHelper("binary_cross_entropy", name=sub_name)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bce_loss',
        inputs={
            'X': [input],
            'Label': [label],
        },
        outputs={'Out': [out]})
147 148

    if weight is not None:
149
        if isinstance(weight, paddle.static.Variable):
150
            weight_name = name if reduction == 'none' else None
151
            out = paddle.multiply(out, weight, name=weight_name)
152 153 154 155 156 157 158 159 160 161 162 163
        else:
            raise ValueError(
                "The weight is not a Tensor, please convert to Tensor.")

    if reduction == 'sum':
        return paddle.sum(out, name=name)
    elif reduction == 'mean':
        return paddle.mean(out, name=name)
    else:
        return out


164 165 166 167 168 169
def binary_cross_entropy_with_logits(logit,
                                     label,
                                     weight=None,
                                     reduction='mean',
                                     pos_weight=None,
                                     name=None):
170
    r"""
171 172 173 174 175 176 177 178 179 180 181 182 183
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
184
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
185

186
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
187 188

    .. math::
189
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
190

N
Noel 已提交
191
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
192 193 194
    we reformulate the loss as follows:

    .. math::
195
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Examples:

        .. code-block:: python

            import paddle
N
Noel 已提交
240

241 242
            logit = paddle.to_tensor([5.0, 1.0, 3.0])
            label = paddle.to_tensor([1.0, 0.0, 1.0])
243
            output = paddle.nn.functional.binary_cross_entropy_with_logits(logit, label)
N
Noel 已提交
244
            print(output)  # [0.45618808]
245 246 247 248 249 250 251 252

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in binary_cross_entropy_with_logits "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

Z
zhiboniu 已提交
253
    if in_dynamic_mode():
254
        one = _varbase_creator(dtype=logit.dtype)
W
wanghuancoder 已提交
255 256 257 258
        _C_ops.fill_constant(one, 'value',
                             float(1.0), 'force_cpu', False, 'dtype', one.dtype,
                             'str_value', '1.0', 'shape', [1])
        out = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
259
        if pos_weight is not None:
W
wanghuancoder 已提交
260 261 262 263 264
            log_weight = _C_ops.elementwise_add(
                _C_ops.elementwise_mul(label,
                                       _C_ops.elementwise_sub(pos_weight, one)),
                one)
            out = _C_ops.elementwise_mul(out, log_weight)
265
        if weight is not None:
W
wanghuancoder 已提交
266
            out = _C_ops.elementwise_mul(out, weight)
267 268

        if reduction == "sum":
W
wanghuancoder 已提交
269
            return _C_ops.reduce_sum(out, 'reduce_all', True)
270
        elif reduction == "mean":
W
wanghuancoder 已提交
271
            return _C_ops.mean(out)
272 273 274 275 276 277 278 279 280 281 282 283 284
        else:
            return out

    fluid.data_feeder.check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'],
        'binary_cross_entropy_with_logits')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'],
        'binary_cross_entropy_with_logits')
    sigmoid_name = None
    if reduction == 'none' and pos_weight is None and weight is None:
        sigmoid_name = name

285
    out = paddle.fluid.layers.sigmoid_cross_entropy_with_logits(
286 287
        logit, label, name=sigmoid_name)

Z
zhiboniu 已提交
288
    one = paddle.full(shape=[1], fill_value=1.0, dtype=logit.dtype)
289 290 291 292 293
    if pos_weight is not None:
        fluid.data_feeder.check_variable_and_dtype(
            pos_weight, 'pos_weight', ['float32', 'float64'],
            'binary_cross_entropy_with_logits')
        log_weight = paddle.add(
294
            paddle.multiply(label, paddle.subtract(pos_weight, one)), one)
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
        pos_weight_name = name if reduction == 'none' and weight is None else None
        out = paddle.multiply(out, log_weight, name=pos_weight_name)

    if weight is not None:
        fluid.data_feeder.check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'],
            'binary_cross_entropy_with_logits')
        weight_name = name if reduction == 'none' else None
        out = paddle.multiply(out, weight, name=weight_name)

    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
        return paddle.mean(out, name=name)
    return out


312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
def hsigmoid_loss(input,
                  label,
                  num_classes,
                  weight,
                  bias=None,
                  path_table=None,
                  path_code=None,
                  is_sparse=False,
                  name=None):
    """
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        input (Tensor): A tensor with the shape [N, D], where N is the size of mini-batch,
            and D is the feature size. Its data type supports float32 or float64.
        label (Tensor): A tensor contains the labels of training data. Its shape is [N, 1]
            and data type is int64.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (path_code and path_table is None are None), `num_classes`
            should not be None. If the custom tree is used (path_code and path_table is None are not None),
            `num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight (Tensor): A tensor with shape (num_classes - 1, D), with the same data type as `input`.
        bias (Tensor, optional): A tensor with shape (num_classes - 1, 1), with the same data type as `input`.
            If `bias` is None, no bias will be add. Default is None.
        path_table (Tensor, optional): A tensor that stores each batch of samples' path from leaf to root
            node, its shape is [N, L] and data type is int64, where L is the length of path. For each sample i,
            path_table[i] is a np.array like structure and each element in this array is the indexes in parent
            nodes' weight matrix. If `path_table` and `path_code` are None, the default tree will be used.
            Default is None.
        path_code (Tensor, optional): A tensor that stores each batch of samples' code of path from leaf
            to root node, its shape is [N, L] and data type is int64, which is the same as :attr:`path_table`.
            Each code of path is consisted with the code of nodes from leaf to root node. If `path_table` and
            `path_code` are None, the default tree will be used. Default is None.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating. If `is_sparse` is True,
            the gradient of `weight` and `input` will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A tensor with the cost of hierarchical sigmoid, its shape is [N, 1] and data type is the same as `input`.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            paddle.set_device('cpu')

            input = paddle.uniform([2, 3])
            # [[-0.8018668   0.8736385  -0.9064771 ] # random
            #  [-0.10228515 -0.87188244 -0.8783718 ]] # random
            label = paddle.to_tensor([0, 1, 4, 5])
            num_classes = 5
            weight=paddle.uniform([num_classes-1, 3])
            # [[-0.24148715  0.8449961  -0.7399121 ] # random
            #  [-0.9800559   0.43509364  0.9091208 ] # random
            #  [ 0.60194826  0.10430074 -0.4521166 ] # random
            #  [-0.4469818  -0.01536179 -0.604454  ]] # random

            out=F.hsigmoid_loss(input, label, num_classes, weight)
            # [[3.0159328]
            #  [2.2407534]]
    """

Z
zhiboniu 已提交
395
    if in_dynamic_mode():
W
wanghuancoder 已提交
396
        out, _, _ = _C_ops.hierarchical_sigmoid(
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            input, weight, label, path_table, path_code, bias, 'num_classes',
            num_classes, 'is_sparse', is_sparse, 'remote_prefetch', is_sparse)
        return out

    check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                             'hsigmoid_loss')
    check_variable_and_dtype(label, 'label', ['int64'], 'hsigmoid_loss')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'],
                             'hsigmoid_loss')
    if bias is not None:
        check_variable_and_dtype(bias, 'bias', ['float32', 'float64'],
                                 'hsigmoid_loss')
    if path_table is not None:
        check_variable_and_dtype(path_table, 'path_table', ['int64'],
                                 'hsigmoid_loss')
    if path_code is not None:
        check_variable_and_dtype(path_code, 'path_code', ['int64'],
                                 'hsigmoid_loss')

    attrs = {
        "num_classes": num_classes,
        "is_sparse": is_sparse,
        "remote_prefetch": is_sparse
    }

    inputs = {
        "X": input,
        "W": weight,
        "Bias": bias,
        "PathTable": path_table,
        "PathCode": path_code,
        "Label": label
    }

    helper = LayerHelper('hsigmoid_loss', **locals())
    out = helper.create_variable_for_type_inference(input.dtype)
    pre_out = helper.create_variable_for_type_inference(input.dtype)
    outputs = {"Out": out, "PreOut": pre_out, "W_Out": weight}

    helper.append_op(
        type="hierarchical_sigmoid",
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)
    return out


444
def smooth_l1_loss(input, label, reduction='mean', delta=1.0, name=None):
445
    r"""
446 447 448 449 450 451 452
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

453
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
454 455 456 457 458 459


    where z_i is given by:

    .. math::

460 461
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
462
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
463
        \end{array} \right.
464 465 466 467 468 469 470 471 472 473 474 475 476

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is
            (N, C), where C is number of classes, and if shape is more than 2D, this
            is (N, C, D1, D2,..., Dk), k >= 1.
        label (Tensor): Label tensor, the data type is float32 or float64. The shape of label
            is the same as the shape of input.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
477
        delta (float, optional): Specifies the hyperparameter delta to be used.
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        The tensor variable storing the smooth_l1_loss of input and label.

    Return type: Tensor.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
499
            output = paddle.nn.functional.smooth_l1_loss(input, label)
G
Guanghua Yu 已提交
500
            print(output)
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
    """
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'smooth_l1_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'smooth_l1_loss')

    out = huber_loss(input=input, label=label, delta=delta)

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in smooth_l1_loss should be 'sum', 'mean' or"
            " 'none', but received %s, which is not allowed." % reduction)
    if reduction == 'none':
        return out
    elif reduction == 'mean':
516
        return paddle.mean(out)
517
    elif reduction == 'sum':
518
        return paddle.sum(out)
519 520


521 522
def margin_ranking_loss(input,
                        other,
523
                        label,
524 525 526
                        margin=0.0,
                        reduction='mean',
                        name=None):
527
    r"""
528

529
    This op the calcluate the the margin rank loss between the input, other and label, use the math function as follows.
530

531
    .. math::
532
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        input(Tensor): the first input tensor, it's data type should be float32, float64.
        other(Tensor): the second input tensor, it's data type should be float32, float64.
549
        label(Tensor): the label value corresponding to input, it's data type should be float32, float64.
550 551 552 553 554 555 556 557 558 559
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns: Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.

    Examples:

        .. code-block:: python

560 561
            import paddle

Z
Zhong Hui 已提交
562 563 564
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype='float32')
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype='float32')
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype='float32')
565
            loss = paddle.nn.functional.margin_ranking_loss(input, other, label)
N
Noel 已提交
566
            print(loss) # [0.75]
567
    """
568 569 570 571
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)
Z
zhiboniu 已提交
572
    if in_dynamic_mode():
W
wanghuancoder 已提交
573 574
        out = _C_ops.elementwise_sub(other, input)
        out = _C_ops.elementwise_mul(out, label)
575 576
        if margin != 0.0:
            margin = fluid.dygraph.base.to_variable([margin], dtype=out.dtype)
W
wanghuancoder 已提交
577 578
            out = _C_ops.elementwise_add(out, margin)
        out = _C_ops.relu(out)
579
        if reduction == 'sum':
W
wanghuancoder 已提交
580
            return _C_ops.reduce_sum(out, 'reduce_all', True)
581
        elif reduction == 'mean':
W
wanghuancoder 已提交
582
            return _C_ops.mean(out)
583 584 585 586 587 588 589 590
        return out

    helper = LayerHelper("margin_ranking_loss", **locals())
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
        other, 'other', ['float32', 'float64'], 'margin_rank_loss')
    fluid.data_feeder.check_variable_and_dtype(
591
        label, 'label', ['float32', 'float64'], 'margin_rank_loss')
592

593
    out = paddle.subtract(other, input)
594
    out = paddle.multiply(out, label)
595 596 597

    if margin != 0.0:
        margin_var = out.block.create_var(dtype=out.dtype)
Z
zhiboniu 已提交
598
        margin_var = paddle.full(shape=[1], fill_value=margin, dtype=out.dtype)
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
        out = paddle.add(out, margin_var)

    result_out = helper.create_variable_for_type_inference(input.dtype)

    if reduction == 'none':
        helper.append_op(
            type="relu", inputs={"X": out}, outputs={"Out": result_out})
        return result_out
    elif reduction == 'sum':
        out = paddle.nn.functional.relu(out)
        attrs = {"dim": [0], "keep_dim": False, "reduce_all": True}
        helper.append_op(
            type="reduce_sum",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs=attrs)
        return result_out
    elif reduction == 'mean':
        out = paddle.nn.functional.relu(out)
        helper.append_op(
            type="mean",
            inputs={"X": out},
            outputs={"Out": result_out},
            attrs={})
        return result_out


626
def l1_loss(input, label, reduction='mean', name=None):
627
    r"""
628
    This operator computes the L1 Loss of Tensor ``input`` and ``label`` as follows.
629

630
    If `reduction` set to ``'none'``, the loss is:
631 632

    .. math::
633
        Out = \lvert input - label \rvert
634

635
    If `reduction` set to ``'mean'``, the loss is:
636 637

    .. math::
638
        Out = MEAN(\lvert input - label \rvert)
639

640
    If `reduction` set to ``'sum'``, the loss is:
641 642

    .. math::
643
        Out = SUM(\lvert input - label \rvert)
644

645

646
    Parameters:
N
Noel 已提交
647 648
        input (Tensor): The input tensor. The shapes is [N, `*`], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, `*`], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
649
        reduction (str, optional): Indicate the reduction to apply to the loss,
650
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
651 652 653
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
654 655
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
N
Noel 已提交
656

657
    Returns:
658 659 660
        Tensor, the L1 Loss of Tensor ``input`` and ``label``.
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
N
Noel 已提交
661

662 663
    Examples:
        .. code-block:: python
N
Noel 已提交
664

665
            import paddle
666

667 668
            input = paddle.to_tensor([[1.5, 0.8], [0.2, 1.3]])
            label = paddle.to_tensor([[1.7, 1], [0.4, 0.5]])
669

670
            l1_loss = paddle.nn.functional.l1_loss(input, label)
671
            print(l1_loss.numpy())
672 673
            # [0.35]

674
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='none')
675
            print(l1_loss.numpy())
676 677 678
            # [[0.20000005 0.19999999]
            # [0.2        0.79999995]]

679
            l1_loss = paddle.nn.functional.l1_loss(input, label, reduction='sum')
680
            print(l1_loss.numpy())
681 682 683 684 685 686 687
            # [1.4]
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
            "received %s, which is not allowed." % reduction)

Z
zhiboniu 已提交
688
    if in_dynamic_mode():
689
        unreduced = _elementwise_op_in_dygraph(
690
            input, label, axis=-1, act='abs', op_name='elementwise_sub')
691
        if reduction == 'mean':
W
wanghuancoder 已提交
692
            return _C_ops.mean(unreduced)
693
        elif reduction == 'sum':
W
wanghuancoder 已提交
694 695
            return _C_ops.reduce_sum(unreduced, 'dim', [0], 'keep_dim', False,
                                     'reduce_all', True)
696 697 698 699
        else:
            return unreduced

    fluid.data_feeder.check_variable_and_dtype(
700
        input, 'input', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')
701 702 703 704
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64', 'int32', 'int64'], 'l1_loss')

    if reduction == 'sum':
705
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
706 707
        return paddle.sum(unreduced, name=name)
    elif reduction == 'mean':
708
        unreduced = paddle.fluid.layers.elementwise_sub(input, label, act='abs')
709 710
        return paddle.mean(unreduced, name=name)
    else:
711 712
        return paddle.fluid.layers.elementwise_sub(
            input, label, act='abs', name=name)
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750


def nll_loss(input,
             label,
             weight=None,
             ignore_index=-100,
             reduction='mean',
             name=None):
    """
    This api returns negative log likelihood.
    See more detail in :ref:`api_nn_loss_NLLLoss` .

    Parameters:
         input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
             But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
             The data type is float32, float64.
         label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
             The data type is int64.
         weight (Tensor, optional): Weight tensor, a manual rescaling weight given
             to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
             it treated as if having all ones. the data type is
             float32, float64, Default is ``'None'``.
         ignore_index (int64, optional): Specifies a target value that is ignored
             and does not contribute to the input gradient.
         reduction (str, optional): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
         name (str, optional): Name for the operation (optional, default is None).
             For more information, please refer to :ref:`api_guide_Name`.

    Returns:
         `Tensor`, the value of negative log likelihood loss.

    Examples:
        .. code-block:: python
751

752 753 754 755
                import paddle
                from paddle.nn.functional import nll_loss
                log_softmax = paddle.nn.LogSoftmax(axis=1)

756 757 758 759 760
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                          [0.53331435, 0.07999352, 0.8549948 ],
                          [0.25879037, 0.39530203, 0.698465  ],
                          [0.73427284, 0.63575995, 0.18827209],
                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
761
                log_out = log_softmax(input)
762
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
763
                result = nll_loss(log_out, label)
764
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
765 766 767 768 769 770 771 772 773 774 775 776 777
    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
            "'none', but received %s, which is not allowed." % reduction)

    input_shape = list(input.shape)
    input_dims = len(input_shape)
    if input_dims < 2:
        raise ValueError('Expected 2 or more dimensions (got {})'.format(
            input_dims))
    n = input_shape[0]
    c = input_shape[1]
Z
zhiboniu 已提交
778
    if in_dynamic_mode():
779
        if input_dims != 2 and input_dims != 4:
W
wanghuancoder 已提交
780 781
            input, _ = _C_ops.reshape2(input, None, 'shape', [n, c, 1, -1])
            label, _ = _C_ops.reshape2(label, None, 'shape', [n, 1, -1])
782
            out_shape = [n] + input_shape[2:]
W
wanghuancoder 已提交
783 784 785
        out, total_weight = _C_ops.nll_loss(input, label, weight,
                                            'ignore_index', ignore_index,
                                            'reduction', reduction)
786
        if input_dims != 2 and input_dims != 4 and reduction == 'none':
W
wanghuancoder 已提交
787
            out, _ = _C_ops.reshape2(out, None, 'shape', out_shape)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        return out

    helper = LayerHelper('nll_loss', **locals())

    if input_dims != 2 and input_dims != 4:
        input = reshape(input, shape=[n, c, 1, -1])
        label = reshape(label, shape=[n, 1, -1])
        out_shape = [n] + input_shape[2:]

    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'nll_loss')
    fluid.data_feeder.check_variable_and_dtype(label, 'label', ['int64'],
                                               'nll_loss')
    inputs = {'X': input, 'Label': label}
    attrs = {'reduction': reduction, 'ignore_index': ignore_index}
    if weight is not None:
        if isinstance(weight, Variable):
            inputs['Weight'] = weight

    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    total_weight = helper.create_variable_for_type_inference(dtype=input.dtype)
    outputs = {'Out': out, 'Total_weight': total_weight}

    helper.append_op(
        type='nll_loss', inputs=inputs, outputs=outputs, attrs=attrs)
    if input_dims != 2 and input_dims != 4 and reduction == 'none':
        out = reshape(out, shape=out_shape)

    return out
817 818


819
def kl_div(input, label, reduction='mean', name=None):
820
    r"""
821 822 823 824 825 826 827 828 829 830 831
    This operator calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    While :math:`x` is input and :math:`y` is label.

    While :attr:`reduction` is :attr:`none`, output loss is in
832
    the same shape as input, loss in each point is calculated
833
    seperately and no reduction is applied.
834

835 836
    While :attr:`reduction` is :attr:`mean`, output loss is in
    shape of [1] and loss value is the mean value of all losses.
837

838 839
    While :attr:`reduction` is :attr:`sum`, output loss is in
    shape of [1] and loss value is the sum value of all losses.
840 841

    While :attr:`reduction` is :attr:`batchmean`, output loss is
842 843 844 845
    in shape of [1] and loss value is the sum value of all losses
    divided by batch size.

    Args:
846
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means
847 848 849 850 851 852 853 854 855
             any number of additional dimensions. It's data type should be float32, float64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64.
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
856
        name(str, optional): Name for the operation (optional, default is None). For more information,
857 858 859 860 861 862 863 864 865 866 867
            please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The KL divergence loss. The data type is same as input tensor

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F
868

869 870 871 872
            shape = (5, 20)
            input = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
873
            # 'batchmean' reduction, loss shape will be [1]
874 875
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='batchmean')
L
LielinJiang 已提交
876
            # shape=[1]
877

878
            # 'mean' reduction, loss shape will be [1]
879 880
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='mean')
881 882 883
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
884 885
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='sum')
886 887 888
            # shape=[1]

            # 'none' reduction, loss shape is same with input shape
889 890
            pred_loss = F.kl_div(paddle.to_tensor(input),
                                 paddle.to_tensor(target), reduction='none')
891 892 893
            # shape=[5, 20]

    """
L
LielinJiang 已提交
894 895 896 897
    # ugly type promotion
    if fluid.data_feeder.convert_dtype(
            input.dtype) == 'float32' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float64':
898
        input = paddle.cast(input, 'float64')
L
LielinJiang 已提交
899 900 901
    elif fluid.data_feeder.convert_dtype(
            input.dtype) == 'float64' and fluid.data_feeder.convert_dtype(
                label.dtype) == 'float32':
902
        label = paddle.cast(label, 'float64')
L
LielinJiang 已提交
903

904
    if paddle.in_dynamic_mode():
905 906 907 908 909 910 911 912 913
        out = _C_ops.kldiv_loss(input, label, 'reduction', 'none')
        if reduction == 'mean':
            out = paddle.mean(out)
        elif reduction == 'sum':
            out = paddle.sum(out)
        elif reduction == 'batchmean':
            if len(input.shape) > 0:
                batch_size = input.shape[0]
                out = paddle.sum(out) / batch_size
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
        return out

    helper = LayerHelper('kl_div', **locals())

    fluid.data_feeder.check_variable_and_dtype(input, 'input',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_variable_and_dtype(label, 'label',
                                               ['float32', 'float64'], 'kl_div')
    fluid.data_feeder.check_type(reduction, 'reduction', str, 'kl_div')

    loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': input,
                'Target': label},
        outputs={'Loss': loss},
930 931 932 933 934 935 936 937 938
        attrs={'reduction': 'none'})

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)
    elif reduction == 'batchmean':
        batch_size = paddle.shape(input)[0]
        loss = paddle.sum(loss) / batch_size
939 940 941
    return loss


942
def mse_loss(input, label, reduction='mean', name=None):
943
    r"""
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
    This op accepts input predications and label and returns the mean square error.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

    Parameters:
        input (Tensor): Input tensor, the data type should be float32 or float64.
        label (Tensor): Label tensor, the data type should be float32 or float64.
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.


    Returns:
        Tensor: The tensor tensor storing the mean square error difference of input and label.

    Return type: Tensor.
977

978 979 980
    Examples:

        .. code-block:: python
981

982 983
            import paddle
            mse_loss = paddle.nn.loss.MSELoss()
984 985
            input = paddle.to_tensor(1.5)
            label = paddle.to_tensor(1.7)
986
            output = mse_loss(input, label)
B
Bai Yifan 已提交
987
            print(output)
988 989 990 991 992 993 994 995 996
            # [0.04000002]

    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'mse_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
997
    if not in_dynamic_mode():
998 999 1000 1001 1002 1003
        paddle.fluid.data_feeder.check_variable_and_dtype(
            input, 'input', ['float32', 'float64'], 'mse_loss')
        paddle.fluid.data_feeder.check_variable_and_dtype(
            label, 'label', ['float32', 'float64'], 'mse_loss')

    if reduction == 'none':
1004
        return paddle.square(paddle.subtract(input, label), name=name)
1005 1006
    elif reduction == 'mean':
        return paddle.mean(
1007
            paddle.square(paddle.subtract(input, label)), name=name)
1008
    else:
1009
        return paddle.sum(paddle.square(paddle.subtract(input, label)),
1010
                          name=name)
1011 1012


1013 1014 1015 1016 1017
def ctc_loss(log_probs,
             labels,
             input_lengths,
             label_lengths,
             blank=0,
1018
             reduction='mean',
H
Hui Zhang 已提交
1019
             norm_by_times=False):
1020 1021
    """

1022 1023 1024
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1025 1026 1027
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
1028
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1029 1030 1031 1032 1033
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.
1034
        norm_by_times (bool, default False) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
H
Hui Zhang 已提交
1035

1036 1037
    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    Examples:

        .. code-block:: python

            # declarative mode
            import paddle.nn.functional as F
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1077 1078 1079 1080
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1081

1082 1083 1084 1085
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
1086
                reduction='none')
1087
            print(loss)  #[3.9179852 2.9076521]
1088

1089 1090 1091 1092 1093
            loss = F.ctc_loss(log_probs, labels,
                input_lengths,
                label_lengths,
                blank=0,
                reduction='mean')
1094
            print(loss)  #[1.1376063]
1095 1096 1097

    """

1098
    loss_out = fluid.layers.warpctc(log_probs, labels, blank, norm_by_times,
H
Hui Zhang 已提交
1099
                                    input_lengths, label_lengths)
1100

Z
zhiboniu 已提交
1101
    loss_out = paddle.squeeze(loss_out, [-1])
1102 1103
    assert reduction in ['mean', 'sum', 'none']
    if reduction == 'mean':
S
ShenLiang 已提交
1104
        loss_out = paddle.mean(loss_out / label_lengths)
1105 1106 1107 1108 1109
    elif reduction == 'sum':
        loss_out = paddle.sum(loss_out)
    return loss_out


1110 1111 1112 1113 1114 1115 1116 1117 1118
def margin_cross_entropy(logits,
                         label,
                         margin1=1.0,
                         margin2=0.5,
                         margin3=0.0,
                         scale=64.0,
                         group=None,
                         return_softmax=False,
                         reduction='mean'):
1119
    r"""
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    .. math::

        L=-\\frac{1}{N}\sum^N_{i=1}\log\\frac{e^{s(cos(m_{1}\\theta_{y_i}+m_{2})-m_{3})}}{e^{s(cos(m_{1}\\theta_{y_i}+m_{2})-m_{3})}+\sum^n_{j=1,j\\neq y_i} e^{scos\\theta_{y_i}}}

    where the :math:`\\theta_{y_i}` is the angle between the feature :math:`x` and
    the representation of class :math:`i`. The details of ArcFace loss
    could be referred to https://arxiv.org/abs/1801.07698.

    .. hint::
        The API supports model parallel and single GPU. And logits.shape[-1] can be different at each rank.

    Args:
G
Guoxia Wang 已提交
1132
        logits (Tensor): shape[N, local_num_classes], the output of the normalized X multiply the normalized W.
1133
                The logits is shard_logits when using model parallel.
G
Guoxia Wang 已提交
1134 1135 1136 1137 1138
        label (Tensor): shape[N] or shape[N, 1], the groud truth label.
        margin1 (float, optional): m1 of margin loss, default value is `1.0`.
        margin2 (float, optional): m2 of margin loss, default value is `0.5`.
        margin3 (float, optional): m3 of margin loss, default value is `0.0`.
        scale (float, optional): s of margin loss, default value is `64.0`.
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        group (Group, optional): The abstract representation of group, see paddle.distributed.collective.Group.
            Default `None`.
        return_softmax (bool, optional): Whether return softmax probability. Default value is `False`.
        reduction (str, optional): The candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'mean'``, return the average of loss;
                    If :attr:`reduction` is ``'sum'``, return the sum of loss;
                    If :attr:`reduction` is ``'none'``, no reduction will be applied.
                    Default value is `'mean'`.

    Returns:
        ``Tensor`` or Tuple of two ``Tensor`` : Return the cross entropy loss if \
            `return_softmax` is False, otherwise the tuple \
            (loss, softmax), softmax is shard_softmax when \
            using model parallel, otherwise softmax is in \
            the same shape with input logits. If ``reduction == None``, \
            the shape of loss is ``[N, 1]``, otherwise the shape is ``[1]``.

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
1159
        :name: code-example1
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207

        # required: gpu
        # Single GPU
        import paddle
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_classes = 4

        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_classes],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)
        
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.85204151, -0.55557678,  0.04994566,  0.71986042],
        #        [-0.20198586, -0.35270476, -0.55182702,  0.09749021]])
        #Tensor(shape=[2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [2, 3])
        #Tensor(shape=[2, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[82.37059586],
        #        [12.13448420]])
        #Tensor(shape=[2, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.99978819, 0.00000000, 0.00000000, 0.00021181],
        #        [0.99992995, 0.00006468, 0.00000000, 0.00000537]])

    .. code-block:: python
G
Guoxia Wang 已提交
1208
        :name: code-example2
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320

        # required: distributed
        # Multi GPU, test_margin_cross_entropy.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        rank_id = dist.get_rank()
        m1 = 1.0
        m2 = 0.5
        m3 = 0.0
        s = 64.0
        batch_size = 2
        feature_length = 4
        num_class_per_card = [4, 8]
        num_classes = paddle.sum(paddle.to_tensor(num_class_per_card))

        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)

        X = paddle.randn(
            shape=[batch_size, feature_length],
            dtype='float64')
        X_list = []
        dist.all_gather(X_list, X)
        X = paddle.concat(X_list, axis=0)
        X_l2 = paddle.sqrt(paddle.sum(paddle.square(X), axis=1, keepdim=True))
        X = paddle.divide(X, X_l2)

        W = paddle.randn(
            shape=[feature_length, num_class_per_card[rank_id]],
            dtype='float64')
        W_l2 = paddle.sqrt(paddle.sum(paddle.square(W), axis=0, keepdim=True))
        W = paddle.divide(W, W_l2)

        logits = paddle.matmul(X, W)
        loss, softmax = paddle.nn.functional.margin_cross_entropy(
            logits, label, margin1=m1, margin2=m2, margin3=m3, scale=s, return_softmax=True, reduction=None)

        print(logits)
        print(label)
        print(loss)
        print(softmax)

        # python -m paddle.distributed.launch --gpus=0,1 test_margin_cross_entropy.py 
        ## for rank0 input
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[ 0.32888934,  0.02408748, -0.02763289,  0.18173063],
        #        [-0.52893978, -0.10623845, -0.21596515, -0.06432517],
        #        [-0.00536345, -0.03924667,  0.66735314, -0.28640926],
        #        [-0.09907366, -0.48534973, -0.10365338, -0.39472322]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank1 input
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[ 0.68654754,  0.28137170,  0.69694954, -0.60923933, -0.57077653,  0.54576703, -0.38709028,  0.56028204],
        #        [-0.80360371, -0.03042448, -0.45107338,  0.49559349,  0.69998950, -0.45411693,  0.61927630, -0.82808600],
        #        [ 0.11457570, -0.34785879, -0.68819499, -0.26189226, -0.48241491, -0.67685711,  0.06510185,  0.49660849],
        #        [ 0.31604851,  0.52087884,  0.53124749, -0.86176582, -0.43426329,  0.34786144, -0.10850784,  0.51566383]])
        #Tensor(shape=[4], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [11, 1 , 10, 11])

        ## for rank0 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 4], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
        #       [[0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.99998205, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000]])
        ## for rank1 output
        #Tensor(shape=[4, 1], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[38.96608230],
        #        [81.28152394],
        #        [69.67229865],
        #        [31.74197251]])
        #Tensor(shape=[4, 8], dtype=float64, place=CUDAPlace(1), stop_gradient=True,
        #       [[0.33943993, 0.00000000, 0.66051859, 0.00000000, 0.00000000, 0.00004148, 0.00000000, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000207, 0.99432097, 0.00000000, 0.00567696, 0.00000000],
        #        [0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00001795],
        #        [0.00000069, 0.33993085, 0.66006319, 0.00000000, 0.00000000, 0.00000528, 0.00000000, 0.00000000]])
    """

    assert reduction in ['mean', 'sum', 'none', None]
    if group is not None and not group.is_member():
        return

    ring_id = 0 if group is None else group.id
    rank = 0
    nranks = 1
    if core.is_compiled_with_dist():
        parallel_env = paddle.distributed.ParallelEnv()
        global_rank = parallel_env.rank
        rank = global_rank if group is None else group.get_group_rank(
            global_rank)
        nranks = parallel_env.world_size if group is None else group.nranks

    input_dims = len(list(logits.shape))
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
        raise ValueError(
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=-1)

Z
zhiboniu 已提交
1321
    if in_dynamic_mode():
1322
        softmax, loss = _C_ops.margin_cross_entropy(
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
            logits, label, 'ring_id', ring_id, 'rank', rank, 'nranks', nranks,
            'margin1', margin1, 'margin2', margin2, 'margin3', margin3, 'scale',
            scale, 'return_softmax', return_softmax)
        if reduction == 'mean':
            loss = paddle.mean(loss)
        elif reduction == 'sum':
            loss = paddle.sum(loss)
        if not return_softmax:
            return loss
        else:
            return loss, softmax

    op_type = 'margin_cross_entropy'
    helper = LayerHelper(op_type, **locals())
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)

    check_variable_and_dtype(logits, 'logits',
                             ['float16', 'float32', 'float64'],
                             'margin_cross_entropy')
    check_variable_and_dtype(label, 'label', ['int32', 'int64'],
                             'margin_cross_entropy')

    helper.append_op(
        type=op_type,
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
            'return_softmax': return_softmax,
            'ring_id': ring_id,
            'rank': rank,
            'nranks': nranks,
            'margin1': margin1,
            'margin2': margin2,
            'margin3': margin3,
            'scale': scale,
        })

    if reduction == 'mean':
        loss = paddle.mean(loss)
    elif reduction == 'sum':
        loss = paddle.sum(loss)

    if not return_softmax:
        return loss
    else:
        return loss, softmax


1374 1375 1376 1377 1378 1379 1380
@deprecated(
    since="2.0.0",
    update_to="paddle.nn.functional.cross_entropy",
    level=1,
    reason=(
        'Please notice that behavior of "paddle.nn.functional.softmax_with_cross_entropy" '
        'and "paddle.nn.functional.cross_entropy" is different.'))
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
                               ignore_index=-100,
                               numeric_stable_mode=True,
                               return_softmax=False,
                               axis=-1):
    return fluid_softmax_with_cross_entropy(logits, label, soft_label,
                                            ignore_index, numeric_stable_mode,
                                            return_softmax, axis)


1393 1394 1395 1396
def cross_entropy(input,
                  label,
                  weight=None,
                  ignore_index=-100,
1397 1398 1399
                  reduction='mean',
                  soft_label=False,
                  axis=-1,
1400
                  use_softmax=True,
1401
                  name=None):
1402
    r"""
H
HydrogenSulfate 已提交
1403 1404 1405
    By default, this operator implements the cross entropy loss function with softmax. This function 
    combines the calculation of the softmax operation and the cross entropy loss function 
    to provide a more numerically stable computing. 
1406

1407
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
1408

H
HydrogenSulfate 已提交
1409 1410
    By default, this operator will calculate the mean of the result, and you can also affect 
    the default behavior by using the reduction parameter. Please refer to the part of 
1411
    parameters for details.
1412

1413
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
H
HydrogenSulfate 已提交
1414
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels 
1415
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
1416

1417
    The calculation of this operator includes the following two steps.
1418

1419
    - **1.softmax cross entropy**
1420

1421
        1. Hard label (each sample can only be assigned into one category)
1422

1423
        1.1. when use_softmax=True
1424

1425 1426
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
1427

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
            where, N is the number of samples and C is the number of categories.

        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).




    - **2. Weight and reduction processing**

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
H
HydrogenSulfate 已提交
1469
                \\loss_j=loss_j*weight[label_j] 
1470

1471

1472 1473 1474 1475 1476 1477 1478
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

H
HydrogenSulfate 已提交
1479
            2.1 if the ``reduction`` parameter is ``none`` 
1480 1481 1482

                Return the previous result directly

H
HydrogenSulfate 已提交
1483
            2.2 if the ``reduction`` parameter is ``sum`` 
1484 1485 1486 1487 1488 1489

                Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

H
HydrogenSulfate 已提交
1490 1491
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to 
            the ``weight`` parameter as follows. 
1492

H
HydrogenSulfate 已提交
1493
            2.3.1. If the  ``weight``  parameter is ``None`` 
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506

                   Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

                  where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
H
HydrogenSulfate 已提交
1507
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j] 
1508 1509 1510 1511 1512

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
H
HydrogenSulfate 已提交
1513 1514
 
 
1515
    Parameters:
1516 1517 1518 1519

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
H
HydrogenSulfate 已提交
1520
	    :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` . 
1521

H
HydrogenSulfate 已提交
1522
            Note: 
1523

H
HydrogenSulfate 已提交
1524
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the 
1525 1526 1527
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
H
HydrogenSulfate 已提交
1528
 
1529 1530 1531 1532 1533 1534
        - **label** (Tensor)

            1. If soft_label=False, the shape is
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

H
HydrogenSulfate 已提交
1535
            2. If soft_label=True, the shape and data type should be same with ``input`` , 
1536 1537 1538 1539
            and the sum of the labels for each sample should be 1.

        - **weight** (Tensor, optional)

H
HydrogenSulfate 已提交
1540 1541
            a manual rescaling weight given to each class. 
            If given, has to be a Tensor of size C and the data type is float32, float64. 
1542 1543 1544 1545 1546
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
H
HydrogenSulfate 已提交
1547 1548
            and does not contribute to the loss. A negative value means that no label 
            value needs to be ignored. Only valid when soft_label = False.  
1549 1550 1551 1552 1553
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
1554 1555
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
H
Hui Zhang 已提交
1556
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
1557 1558
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1559

1560 1561
        - **soft_label** (bool, optional)

H
HydrogenSulfate 已提交
1562
            Indicate whether label is soft. 
1563 1564 1565 1566
            Default is ``False``.

        - **axis** (int, optional)

H
HydrogenSulfate 已提交
1567 1568 1569
            The index of dimension to perform softmax calculations. 
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the 
            number of dimensions of input :attr:`input`. 
1570 1571 1572 1573 1574 1575 1576
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
1577
        - **name** (str, optional)
1578 1579 1580

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .
1581 1582 1583

    Returns:

1584 1585
        Tensor. Return the softmax cross_entropy loss of ``input`` and ``label``.
        The data type is the same as input.
1586

1587
        If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.
1588

1589
        If :attr:`reduction` is ``'none'``:
C
Chen Long 已提交
1590

H
HydrogenSulfate 已提交
1591
        1. If soft_label = False, the dimension of return value is the same with ``label`` . 
C
Chen Long 已提交
1592

H
HydrogenSulfate 已提交
1593
        2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` . 
1594 1595 1596 1597 1598


     Example1(hard labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
1599
            
1600 1601 1602 1603 1604
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
H
HydrogenSulfate 已提交
1605
            input =  paddle.rand([N, C], dtype='float64')  
1606
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
H
HydrogenSulfate 已提交
1607 1608
            weight = paddle.rand([C], dtype='float64') 
            
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]


    Example2(soft labels):

        .. code-block:: python
H
HydrogenSulfate 已提交
1620
            
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
            import paddle
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
H
HydrogenSulfate 已提交
1634 1635 1636
                                                                  logits,  
                                                                  labels, 
                                                                  soft_label=True, 
1637 1638 1639 1640
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]
C
Chen Long 已提交
1641

1642 1643 1644 1645
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
1646 1647 1648
            "The value of 'reduction' in softmax_cross_entropy"
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)
1649 1650 1651 1652 1653 1654
    if ignore_index > 0 and soft_label == True:
        raise ValueError(
            "When soft_label == True, the value of 'ignore_index' in softmax_cross_entropy"
            "should be '-100', but received %s, which is not allowed." %
            ignore_index)

1655
    input_dims = len(list(input.shape))
1656 1657 1658
    if input_dims == 0:
        raise ValueError('The dimention of input should be larger than zero!')

1659 1660
    label_dims = len(list(label.shape))
    if input_dims - 1 != label_dims and input_dims != label_dims:
1661
        raise ValueError(
1662 1663 1664 1665
            'Expected nput_dims - 1 = label_dims or input_dims == label_dims\
             (got nput_dims{}, label_dims{})'.format(input_dims, label_dims))
    if input_dims - 1 == label_dims:
        label = paddle.unsqueeze(label, axis=axis)
Z
zhiboniu 已提交
1666
    if in_dynamic_mode():
H
HydrogenSulfate 已提交
1667
        if soft_label == False:
H
HydrogenSulfate 已提交
1668 1669
            valid_label = paddle.cast(
                label != ignore_index, dtype=label.dtype) * label
H
HydrogenSulfate 已提交
1670 1671 1672
            label_min = paddle.min(valid_label)
            label_max = paddle.max(valid_label)
            if label_min < 0:
1673 1674
                raise ValueError("Target {} is out of lower bound.".format(
                    label_min.item()))
H
HydrogenSulfate 已提交
1675
            if label_max >= input.shape[axis]:
1676 1677
                raise ValueError("Target {} is out of upper bound.".format(
                    label_max.item()))
F
fwenguang 已提交
1678
        if core.is_compiled_with_npu() or core.is_compiled_with_mlu():
1679 1680 1681 1682 1683 1684 1685 1686 1687
            _, _, out = _C_ops.softmax_with_cross_entropy(
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
        else:
            _, out = _C_ops.softmax_with_cross_entropy(
                input, label, 'soft_label', soft_label, 'ignore_index',
                ignore_index, 'numeric_stable_mode', True, 'axis', axis,
                'use_softmax', use_softmax)
1688

1689
        if weight is not None:
1690

H
HydrogenSulfate 已提交
1691
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
1692 1693
            if soft_label == True:
                # chajchaj:
H
HydrogenSulfate 已提交
1694
                # weight's shape is C, where C is class num.
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
                # for 1d case: label's shape is [N,C], weight_gather's shape is N.
                # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
                weight_gather = paddle.matmul(
                    x=paddle.cast(label, weight.dtype),
                    y=weight,
                    transpose_x=False,
                    transpose_y=True)
                out_shape = list(out.shape)
                weight_gather_reshape = reshape(weight_gather, shape=out_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)

W
wanghuancoder 已提交
1706
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
1707 1708

            else:
1709 1710 1711 1712 1713 1714 1715
                if input.shape[axis] != weight.shape[-1]:
                    raise ValueError(
                        "input's class_dimension({}) must equal to "
                        "weight's class_dimension({}) "
                        "when weight is provided" \
                            .format(input.shape[axis], weight.shape[-1]))

H
HydrogenSulfate 已提交
1716 1717
                ignore_weight_mask = paddle.cast((label != ignore_index),
                                                 out.dtype)
H
HydrogenSulfate 已提交
1718
                if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
1719
                        axis] == 1:
H
HydrogenSulfate 已提交
1720
                    # TODO: Temporarily use squeeze instead of squeeze_
H
HydrogenSulfate 已提交
1721 1722
                    ignore_weight_mask = paddle.squeeze(ignore_weight_mask,
                                                        axis)
H
HydrogenSulfate 已提交
1723
                if axis != -1 and axis != valid_label.ndim - 1:
1724
                    temp_perm = list(range(axis % valid_label.ndim)) \
1725
                                + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
H
HydrogenSulfate 已提交
1726
                                + [axis % valid_label.ndim]
1727 1728 1729 1730
                    weight_gather = _C_ops.gather_nd(
                        weight, valid_label.transpose(temp_perm))
                else:
                    weight_gather = _C_ops.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
1731 1732
                weight_gather = _C_ops.elementwise_mul(weight_gather,
                                                       ignore_weight_mask)
1733 1734 1735 1736
                input_shape = list(label.shape)
                weight_gather_reshape = reshape(
                    weight_gather, shape=input_shape)
                out = paddle.cast(out, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
1737
                out = _C_ops.elementwise_mul(out, weight_gather_reshape)
1738

1739
        if reduction == "sum":
H
HydrogenSulfate 已提交
1740
            #   because of fluid_softmax_with_cross_entropy op's inner logic,
1741 1742
            #   in the out tensor of this op, the loss of sample with class_index==ignore_index is 0
            #   so, reduce_sum all directly is ok
W
wanghuancoder 已提交
1743
            return _C_ops.reduce_sum(out, 'reduce_all', True)
1744
        elif reduction == "mean":
H
HydrogenSulfate 已提交
1745 1746 1747 1748 1749 1750
            # 1. if weight==none,
            #     numerator: reduce_sum all loss directly is ok causeof fluid_softmax_with_cross_entropy's inner logic
            #     denominator: count sample num with class_index!=ignore_index
            # 2. else
            #     numerator: loss's weighted sum
            #     denominator: cal the sum of weight where the sample's class_index!=ignore_index
1751
            if ignore_index != -100:
W
wanghuancoder 已提交
1752
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
H
HydrogenSulfate 已提交
1753 1754 1755
                # for each label[i],set 1 or 0, according to ignore_index
                # mask[i]=0, if label[i]==ignore_index
                # mask[i]=1, otherwise
1756
                mask = (label != ignore_index)
1757
                if weight is None:
1758
                    mask = paddle.cast(mask, dtype=out_sum.dtype)
W
wanghuancoder 已提交
1759
                    count = _C_ops.reduce_sum(mask, 'reduce_all', True)
1760
                    ret = out_sum / (count + (count == 0.0))
1761 1762
                else:
                    mask = paddle.cast(mask, weight_gather_reshape.dtype)
W
wanghuancoder 已提交
1763
                    weight_ignored = _C_ops.elementwise_mul(
1764
                        mask, weight_gather_reshape)
W
wanghuancoder 已提交
1765 1766
                    weight_sum = _C_ops.reduce_sum(weight_ignored, 'reduce_all',
                                                   True)
1767
                    ret = out_sum / (weight_sum + (weight_sum == 0.0))
1768 1769
                return ret
            elif weight is not None:
W
wanghuancoder 已提交
1770 1771 1772
                out_sum = _C_ops.reduce_sum(out, 'reduce_all', True)
                total_weight = _C_ops.reduce_sum(weight_gather_reshape,
                                                 'reduce_all', True)
1773
                return out_sum / (total_weight + (total_weight == 0.0))
1774
            else:
W
wanghuancoder 已提交
1775
                return _C_ops.mean(out)
1776

1777
        else:
1778 1779
            if input_dims - 1 == label_dims:
                out = paddle.squeeze(out, axis=axis)
1780
            return out
1781

1782 1783 1784
    fluid.data_feeder.check_variable_and_dtype(
        input, 'input', ['float32', 'float64'], 'softmax_cross_entropy')
    fluid.data_feeder.check_variable_and_dtype(
1785 1786
        label, 'label',
        ['uint8', 'int8', 'int16', 'int32', 'int64', 'float32', 'float64'],
1787
        'softmax_cross_entropy')
1788 1789 1790 1791 1792
    attrs = {
        'soft_label': soft_label,
        'ignore_index': ignore_index,
        'numeric_stable_mode': True,
        'axis': axis,
1793
        'use_softmax': use_softmax
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
    }
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
    softmax = helper.create_variable_for_type_inference(dtype=input.dtype)
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': input,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': out},
        attrs=attrs)

1806
    if weight is not None:
1807 1808 1809
        fluid.data_feeder.check_variable_and_dtype(
            weight, 'weight', ['float32', 'float64'], 'softmax_cross_entropy')
        weight_name = name if reduction == 'none' else None
1810 1811
        if soft_label == True:
            # chajchaj:
H
HydrogenSulfate 已提交
1812
            # trans weight from class to sample, shape:N or [N,H,W] for 1d and 2d cases.
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
            # weight's shape is C, where C is class num.
            # for 1d case: label's shape is [N,C], weight_gather's shape is N.
            # for 2d case: label's shape is [N,H,W,C], weight_gather's shape is [N,H,W].
            weight_gather = paddle.matmul(
                x=paddle.cast(label, weight.dtype),
                y=weight,
                transpose_x=False,
                transpose_y=True)

            out_shape = list(out.shape)
            weight_gather_reshape = reshape(weight_gather, shape=out_shape)
            out = paddle.cast(out, weight_gather_reshape.dtype)
        else:
1826 1827
            if input.shape[axis] != weight.shape[-1]:
                raise ValueError("input's class_dimension({}) must equal to "
1828 1829
                                 "weight's class_dimension({}) "
                                 "when weight is provided" \
1830
                                 .format(input.shape[axis], weight.shape[-1]))
H
HydrogenSulfate 已提交
1831

H
HydrogenSulfate 已提交
1832 1833 1834 1835 1836
            valid_label = paddle.multiply(
                paddle.cast(
                    label != ignore_index, dtype=label.dtype), label)
            ignore_weight_mask = paddle.cast((label != ignore_index),
                                             input.dtype)
H
HydrogenSulfate 已提交
1837
            if ignore_weight_mask.ndim > 1 and ignore_weight_mask.shape[
1838 1839
                    axis] == 1:
                ignore_weight_mask = paddle.squeeze(ignore_weight_mask, axis)
H
HydrogenSulfate 已提交
1840
            if axis != -1 and axis != valid_label.ndim - 1:
1841
                temp_perm = list(range(axis % valid_label.ndim)) \
H
HydrogenSulfate 已提交
1842
                            + list(range((axis % valid_label.ndim + 1), valid_label.ndim)) \
1843 1844 1845 1846 1847
                            + [axis % valid_label.ndim]
                weight_gather = paddle.gather_nd(
                    weight, paddle.transpose(valid_label, temp_perm))
            else:
                weight_gather = paddle.gather_nd(weight, valid_label)
H
HydrogenSulfate 已提交
1848 1849
            weight_gather = paddle.multiply(weight_gather, ignore_weight_mask)

1850 1851
            input_shape = list(label.shape)
            weight_gather_reshape = reshape(weight_gather, shape=input_shape)
1852
        out = paddle.multiply(out, weight_gather_reshape, name=weight_name)
1853

1854 1855 1856
    if reduction == "sum":
        return paddle.sum(out, name=name)
    elif reduction == "mean":
1857 1858
        if ignore_index != -100:
            out_sum = paddle.sum(out, name=name)
H
HydrogenSulfate 已提交
1859 1860 1861
            # for each label[i],set 1 or 0, according to ignore_index
            # mask[i]=0, if label[i]==ignore_index
            # mask[i]=1, otherwise
1862 1863 1864 1865
            mask = (label != ignore_index)
            if (weight is None):
                mask = paddle.cast(mask, dtype=out_sum.dtype)
                count = paddle.sum(mask, name=name)
1866
                ret = out_sum / (count + (count == 0.0))
1867 1868 1869 1870
            else:
                mask = paddle.cast(mask, weight_gather_reshape.dtype)
                weight_ignored = paddle.multiply(mask, weight_gather_reshape)
                weight_sum = paddle.sum(weight_ignored, name=name)
1871
                ret = out_sum / (weight_sum + (weight_sum == 0.0))
1872 1873
            return ret
        elif weight is not None:
1874 1875
            out_sum = paddle.sum(out, name=name)
            total_weight = paddle.sum(weight_gather_reshape)
1876
            return out_sum / (total_weight + (total_weight == 0.0))
1877 1878
        else:
            return paddle.mean(out, name=name)
1879

1880
    else:
1881 1882 1883
        if input_dims - 1 == label_dims:
            out = paddle.squeeze(out, axis=axis)

1884
        return out
1885 1886 1887 1888 1889 1890 1891 1892 1893


def sigmoid_focal_loss(logit,
                       label,
                       normalizer=None,
                       alpha=0.25,
                       gamma=2.0,
                       reduction='sum',
                       name=None):
1894
    r"""
1895 1896 1897 1898 1899 1900
    `Focal Loss <https://arxiv.org/abs/1708.02002>`_ is proposed to address the
    foreground-background class imbalance for classification tasks. It down-weights
    easily-classified examples and thus focuses training on hard examples. For example,
    it is used in one-stage object detection where the foreground-background class
    imbalance is extremely high.

H
HydrogenSulfate 已提交
1901
    This operator measures focal loss function as follows: 
1902 1903

    .. math::
1904
           Out = -Labels * alpha * {(1 - \sigma(Logit))}^{gamma}\log(\sigma(Logit)) - (1 - Labels) * (1 - alpha) * {\sigma(Logit)}^{gamma}\log(1 - \sigma(Logit))
1905

H
HydrogenSulfate 已提交
1906
    We know that :math:`\sigma(Logit) = \frac{1}{1 + \exp(-Logit)}`. 
1907 1908 1909 1910 1911

    Then, if :attr:`normalizer` is not None, this operator divides the
    normalizer tensor on the loss `Out`:

    .. math::
1912
           Out = \frac{Out}{normalizer}
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target ``label`` is 0 for the negative class and is 1 for the positive class.

    Args:
        logit (Tensor): The input logit tensor. The shape is [N, *], where N is batch_size,
            `*` means any number of additional dimensions. The ``logit`` is usually the
            output of a convolution layer. Available dtype is float32, float64.
        label (Tensor): The target label tensor with the same shape as
            ``logit``. The target label whose value should be numbers between 0 and 1.
            Available dtype is float32, float64.
        normalizer (Tensor, optional): The number normalizes the focal loss. It has to be
            a 1-D Tensor whose shape is `[1, ]`. The data type is float32, float64.
            For object detection task, it is the the number of positive samples.
            If set to None, the focal loss will not be normalized. Default is None.
        alpha(int|float, optional): Hyper-parameter to balance the positive and negative example,
H
HydrogenSulfate 已提交
1933
            it should be between 0 and 1.  Default value is set to 0.25. 
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        gamma(int|float, optional): Hyper-parameter to modulate the easy and hard examples.
            Default value is set to 2.0.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'sum'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, if :attr:`reduction` is ``'mean'`` or ``'sum'``, the out shape is :math:`[1]`, otherwise the shape is the same as ``logit``. The same dtype as ``logit`` tensor.

    Examples:

        .. code-block:: python

            import paddle

            logit = paddle.to_tensor([[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]], dtype='float32')
            label = paddle.to_tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32')
            one = paddle.to_tensor([1.], dtype='float32')
            fg_label = paddle.greater_equal(label, one)
1958
            fg_num = paddle.sum(paddle.cast(fg_label, dtype='float32'))
1959
            output = paddle.nn.functional.sigmoid_focal_loss(logit, label, normalizer=fg_num)
1960
            print(output)  # [0.65782464]
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

    """
    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "The value of 'reduction' in sigmoid_focal_loss "
            "should be 'sum', 'mean' or 'none', but received %s, which is not allowed."
            % reduction)

    if normalizer is not None:
        fluid.data_feeder.check_variable_and_dtype(normalizer, 'normalizer',
                                                   ['float32', 'float64'],
                                                   'sigmoid_focal_loss')
        normalizer_shape = list(normalizer.shape)
        normalizer_dims = len(normalizer_shape)
        if normalizer_dims > 1:
            raise ValueError(
                "Expected one dimension of normalizer in sigmoid_focal_loss but got {}.".
                format(normalizer_dims))

Z
zhiboniu 已提交
1980
    if in_dynamic_mode():
1981
        one = _varbase_creator(dtype=logit.dtype)
W
wanghuancoder 已提交
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
        _C_ops.fill_constant(one, 'value',
                             float(1.0), 'force_cpu', False, 'dtype', one.dtype,
                             'str_value', '1.0', 'shape', logit.shape)
        loss = _C_ops.sigmoid_cross_entropy_with_logits(logit, label)
        pred = _C_ops.sigmoid(logit)
        p_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(pred, label),
            _C_ops.elementwise_mul(
                _C_ops.elementwise_sub(one, pred),
                _C_ops.elementwise_sub(one, label)))
1992 1993

        alpha = fluid.dygraph.base.to_variable([alpha], dtype=loss.dtype)
W
wanghuancoder 已提交
1994 1995 1996 1997 1998 1999
        alpha_t = _C_ops.elementwise_add(
            _C_ops.elementwise_mul(alpha, label),
            _C_ops.elementwise_mul(
                _C_ops.elementwise_sub(one, alpha),
                _C_ops.elementwise_sub(one, label)))
        loss = _C_ops.elementwise_mul(alpha_t, loss)
2000 2001

        gamma = fluid.dygraph.base.to_variable([gamma], dtype=loss.dtype)
W
wanghuancoder 已提交
2002 2003 2004
        gamma_t = _C_ops.elementwise_pow(
            _C_ops.elementwise_sub(one, p_t), gamma)
        loss = _C_ops.elementwise_mul(gamma_t, loss)
2005 2006

        if normalizer is not None:
W
wanghuancoder 已提交
2007
            loss = _C_ops.elementwise_div(loss, normalizer)
2008 2009

        if reduction == "sum":
W
wanghuancoder 已提交
2010
            return _C_ops.reduce_sum(loss, 'reduce_all', True)
2011
        elif reduction == "mean":
W
wanghuancoder 已提交
2012
            return _C_ops.mean(loss)
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

        return loss

    fluid.data_feeder.check_variable_and_dtype(
        logit, 'logit', ['float32', 'float64'], 'sigmoid_focal_loss')
    fluid.data_feeder.check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'sigmoid_focal_loss')

    bce_name = None
    if reduction == 'none' and normalizer is None:
        bce_name = name
    loss = paddle.nn.functional.binary_cross_entropy_with_logits(
        logit, label, reduction='none', name=bce_name)

Z
zhiboniu 已提交
2027
    pred = paddle.nn.functional.sigmoid(logit)
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
    p_t = pred * label + (1 - pred) * (1 - label)

    alpha_t = alpha * label + (1 - alpha) * (1 - label)
    loss = paddle.multiply(alpha_t, loss)

    gamma_t = paddle.pow((1 - p_t), gamma)
    loss = paddle.multiply(gamma_t, loss)

    if normalizer is not None:
        normalizer_name = name if reduction == 'none' else None
        loss = paddle.divide(loss, normalizer, name=normalizer_name)

    if reduction == 'mean':
        loss = paddle.mean(loss, name=name)
    elif reduction == 'sum':
        loss = paddle.sum(loss, name=name)

    return loss
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126


def hinge_embedding_loss(input, label, margin=1.0, reduction='mean', name=None):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:
        input (Tensor): Input tensor, the data type is float32 or float64.
            the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64.
            The shape of label is the same as the shape of input.
        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size.
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input. tensor elements should containing 1 or -1, the data type is float32 or float64.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:
        Tensor. The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='none')
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            loss = F.hinge_embedding_loss(input, label, margin=1.0, reduction='mean')
            print(loss)
            # Tensor([0.22222222])
    """

    if reduction not in ['sum', 'mean', 'none']:
        raise ValueError(
            "'reduction' in 'hinge_embedding_loss' should be 'sum', 'mean' or 'none', "
            "but received {}.".format(reduction))

Z
zhiboniu 已提交
2127
    if not in_dynamic_mode():
2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
        check_variable_and_dtype(input, 'input', ['float32', 'float64'],
                                 'hinge_embedding_loss')
        check_variable_and_dtype(label, 'label', ['float32', 'float64'],
                                 'hinge_embedding_loss')

    zero_ = paddle.zeros([1], dtype=input.dtype)
    loss = paddle.where(label == 1., input, zero_) + \
           paddle.where(label == -1., paddle.nn.functional.relu(margin - input), zero_)

    if reduction == 'mean':
        return paddle.mean(loss, name=name)
    elif reduction == 'sum':
        return paddle.sum(loss, name=name)
    elif reduction == 'none':
        return loss