GemmConvOp.cpp 17.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "ConvOp.h"
16
#include "GemmFunctor.h"
17
#include "Im2Col.h"
18 19 20 21 22
#include "paddle/math/MemoryHandle.h"

namespace paddle {

/*
23
 * \brief Forward calculation of convolution.
24 25 26 27 28 29 30 31
 */
template <DeviceType Device>
class GemmConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
32
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
33 34 35 36 37 38
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

39
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
40 41
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
42
    check(inputs, outputs);
43 44 45 46 47 48 49 50 51 52 53 54
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }
55

H
hedaoyuan 已提交
56 57 58 59 60 61 62 63 64
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];
65 66 67 68

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
69
    bool needIm2col = isNeedIm2col(filter);
70

71 72 73
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

74
    TensorShape colShape;
75
    real* colData = NULL;
76

77
    if (needIm2col) {
78 79 80 81 82 83 84 85
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
86

87 88
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
89 90
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
H
hedaoyuan 已提交
91 92
    size_t filterOffset = filter.getElements() / groups_;

93
    for (size_t i = 0; i < batchSize; i++) {
94
      for (size_t g = 0; g < groups_; g++) {
95
        if (needIm2col) {
96 97 98 99 100 101 102
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
103 104 105
                 paddingW(),
                 dilationH(),
                 dilationW());
106 107
        } else {
          colData = inputData + g * inputOffset;
108
        }
H
Bug fix  
hedaoyuan 已提交
109
        int M = outputChannels / groups_;
110
        int N = outputHeight * outputWidth;
H
Bug fix  
hedaoyuan 已提交
111
        int K = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124
        BlasGemm<Device, real>::compute(false,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        K,
                                        colData,
                                        N,
                                        beta,
                                        outputData + g * outputOffset,
                                        N);
125
      }
H
hedaoyuan 已提交
126 127
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
128
    }
D
dangqingqing 已提交
129 130
#ifdef PADDLE_MOBILE_INFERENCE
    if (Device == DEVICE_TYPE_CPU) {
131
      memory_.reset();
D
dangqingqing 已提交
132 133
    }
#endif
134 135 136
  }
};

H
hedaoyuan 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
/*
 * \brief Forward calculation of convolution, optimized for mobile.
 */
template <DeviceType Device>
class GemmConvMobileFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);
    // TODO(hedaoyuan): Need to define some index macros,
    // to avoid useing 0 and 1.
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();
    bool needIm2col = isNeedIm2col(filter);

    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

    TensorShape colShape;
    real* colData = NULL;

    size_t colHeight = inputChannels / groups_ * filterHeight * filterWidth;
    size_t colWidth = outputHeight * outputWidth;
    // Max col matrix height 256, Max col matrix width 1024
    size_t stepColHeight = std::min(colHeight, (size_t)256);
    size_t stepColWidth = std::min(colWidth, (size_t)2048);

    if (needIm2col) {
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});

      resizeBuffer<Device>(stepColHeight * stepColWidth * sizeof(real));
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }

H
hedaoyuan 已提交
209
    Im2ColMobileFunctor<real> im2col;
H
hedaoyuan 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    size_t inputOffset = imShape.getElements();
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    int nStride = colWidth;
    int kStride = colHeight;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        if (needIm2col) {
          real beta_ = beta;
          for (size_t colHeightStart = 0; colHeightStart < colHeight;
               colHeightStart += stepColHeight) {
            for (size_t colWidthStart = 0; colWidthStart < colWidth;
                 colWidthStart += stepColWidth) {
              int N = std::min(colWidth - colWidthStart, stepColWidth);
              int K = std::min(colHeight - colHeightStart, stepColHeight);
              // im2col
              im2col(inputData + g * inputOffset,
                     imShape,
                     colData,
                     colShape,
                     strideH(),
                     strideW(),
                     paddingH(),
                     paddingW(),
H
hedaoyuan 已提交
236 237
                     dilationH(),
                     dilationW(),
H
hedaoyuan 已提交
238 239 240 241 242 243 244
                     colHeightStart,
                     K,
                     colWidthStart,
                     N);

              // gemm
              int M = outputChannels / groups_;
H
hedaoyuan 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258
              BlasGemm<Device, real>::compute(
                  false,
                  false,
                  M,
                  N,
                  K,
                  1.0f,
                  filterData + g * filterOffset + colHeightStart,
                  kStride,
                  colData,
                  N,
                  beta_,
                  outputData + g * outputOffset + colWidthStart,
                  nStride);
H
hedaoyuan 已提交
259 260 261 262 263 264 265
            }
            beta_ = 1.0;
          }
        } else {
          int M = outputChannels / groups_;
          int N = outputHeight * outputWidth;
          int K = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278
          BlasGemm<Device, real>::compute(false,
                                          false,
                                          M,
                                          N,
                                          K,
                                          1.0f,
                                          filterData + g * filterOffset,
                                          K,
                                          inputData + g * inputOffset,
                                          N,
                                          beta,
                                          outputData + g * outputOffset,
                                          N);
H
hedaoyuan 已提交
279 280 281 282 283 284 285 286
        }
      }
      inputData += inputChannels * inputHeight * inputWidth;
      outputData += outputChannels * outputHeight * outputWidth;
    }
  }
};

287 288 289 290 291 292 293 294 295 296
/*
 * \brief Backward input calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
297
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
298 299 300 301 302 303
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

304 305 306
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
307
    check(inputs, outputs);
H
hedaoyuan 已提交
308 309 310
    // Since the implementation of Col2ImFunctor is ADD_TO,
    // this function only supports ADD_TO mode.
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
311
    const TensorShape& output = inputs[0].shape();
312
    const TensorShape& filter = inputs[1].shape();
313 314 315 316 317 318
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
319 320
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
321 322 323 324 325 326 327
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();
328
    bool needIm2col = isNeedIm2col(filter);
329

330 331 332
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

333
    TensorShape colShape;
334
    real* colData = NULL;
335

336
    if (needIm2col) {
337 338 339 340 341 342 343 344
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
345

346 347
    Col2ImFunctor<kCFO, Device, real> col2im;
    size_t inputOffset = imShape.getElements();
H
format  
hedaoyuan 已提交
348
    size_t outputOffset =
349 350 351 352 353 354 355 356
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;

    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
        int K = outputChannels / groups_;
        int N = outputHeight * outputWidth;
        int M = inputChannels / groups_ * filterHeight * filterWidth;
357
        real scale = 0.0f;
358 359
        if (!needIm2col) {
          colData = inputGrad + g * inputOffset;
360 361
          scale = 1.0f;
        }
H
hedaoyuan 已提交
362 363 364 365 366 367 368 369 370 371 372 373 374
        BlasGemm<Device, real>::compute(true,
                                        false,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        filterData + g * filterOffset,
                                        M,
                                        outputGrad + g * outputOffset,
                                        N,
                                        scale,
                                        colData,
                                        N);
375
        if (needIm2col) {
376 377
          col2im(inputGrad + g * inputOffset,
                 imShape,
378
                 colData,
379 380 381 382
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
383 384 385
                 paddingW(),
                 dilationH(),
                 dilationW());
386
        }
387 388 389 390
      }
      inputGrad += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
    }
391 392 393 394 395 396 397 398 399 400 401 402 403
  }
};

/*
 * \brief Backward filter calculation of convolution.
 */
template <DeviceType Device>
class GemmConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

L
liaogang 已提交
404
  void check(const BufferArgs& inputs, const BufferArgs& outputs) override {
H
hedaoyuan 已提交
405 406 407 408 409 410
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

411 412 413
  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
H
hedaoyuan 已提交
414
    check(inputs, outputs);
415
    const TensorShape& output = inputs[0].shape();
416
    const TensorShape& input = inputs[1].shape();
417 418
    const TensorShape& filter = outputs[0].shape();

419 420 421 422 423 424 425
    real beta;
    if (outputs[0].getArgType() == ADD_TO) {
      beta = 1.0;
    } else {
      beta = 0.0;
    }

426 427 428 429
    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
H
hedaoyuan 已提交
430 431
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
432 433 434 435 436 437 438
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();
439
    bool needIm2col = isNeedIm2col(filter);
440

441 442 443
    TensorShape imShape =
        TensorShape({inputChannels / groups_, inputHeight, inputWidth});

444
    TensorShape colShape;
445
    real* colData = NULL;
446

447
    if (needIm2col) {
448 449 450 451 452 453 454 455
      colShape = TensorShape({inputChannels / groups_,
                              filterHeight,
                              filterWidth,
                              outputHeight,
                              outputWidth});
      resizeBuffer<Device>(colShape.getElements());
      colData = reinterpret_cast<real*>(memory_->getBuf());
    }
456

457 458
    Im2ColFunctor<kCFO, Device, real> im2col;
    size_t inputOffset = imShape.getElements();
459 460 461 462 463
    size_t outputOffset =
        (outputChannels / groups_) * outputHeight * outputWidth;
    size_t filterOffset = filter.getElements() / groups_;
    for (size_t i = 0; i < batchSize; i++) {
      for (size_t g = 0; g < groups_; g++) {
464
        if (needIm2col) {
465 466 467 468 469 470 471
          im2col(inputData + g * inputOffset,
                 imShape,
                 colData,
                 colShape,
                 strideH(),
                 strideW(),
                 paddingH(),
X
xzl 已提交
472 473 474
                 paddingW(),
                 dilationH(),
                 dilationW());
475 476
        } else {
          colData = inputData + g * inputOffset;
477
        }
478 479 480
        int M = outputChannels / groups_;
        int K = outputHeight * outputWidth;
        int N = inputChannels / groups_ * filterHeight * filterWidth;
H
hedaoyuan 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493
        BlasGemm<Device, real>::compute(false,
                                        true,
                                        M,
                                        N,
                                        K,
                                        1.0f,
                                        outputGrad + g * outputOffset,
                                        K,
                                        colData,
                                        K,
                                        i == 0 ? beta : 1.0f,
                                        filterGrad + g * filterOffset,
                                        N);
494
      }
495 496
      inputData += inputChannels * inputHeight * inputWidth;
      outputGrad += outputChannels * outputHeight * outputWidth;
497
    }
498 499 500
  }
};

H
hedaoyuan 已提交
501 502 503
#ifdef PADDLE_MOBILE_INFERENCE
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvMobileFunction);
#else
504
REGISTER_TYPED_FUNC(GemmConv, CPU, GemmConvFunction);
H
hedaoyuan 已提交
505
#endif
506 507
REGISTER_TYPED_FUNC(GemmConvGradInput, CPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, CPU, GemmConvGradFilterFunction);
508
#ifdef PADDLE_WITH_CUDA
509
REGISTER_TYPED_FUNC(GemmConv, GPU, GemmConvFunction);
510 511
REGISTER_TYPED_FUNC(GemmConvGradInput, GPU, GemmConvGradInputFunction);
REGISTER_TYPED_FUNC(GemmConvGradFilter, GPU, GemmConvGradFilterFunction);
H
hedaoyuan 已提交
512
#endif
513 514

}  // namespace paddle