pybind.cc 112.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
15

C
chengduoZH 已提交
16
#include <algorithm>
17
#include <cstdlib>
C
chengduoZH 已提交
18
#include <map>
S
sneaxiy 已提交
19
#include <memory>
C
chengduoZH 已提交
20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
23
#include <unordered_set>
C
chengduoZH 已提交
24 25
#include <utility>
#include <vector>
26

27
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
28 29
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
Z
Zhen Wang 已提交
30
#include "paddle/fluid/framework/feed_fetch_type.h"
Y
Yi Wang 已提交
31
#include "paddle/fluid/framework/framework.pb.h"
S
sneaxiy 已提交
32
#include "paddle/fluid/framework/garbage_collector.h"
H
hutuxian 已提交
33
#include "paddle/fluid/framework/io/fs.h"
34
#include "paddle/fluid/framework/ir/coalesce_grad_tensor_pass.h"
35
#include "paddle/fluid/framework/ir/pass_builder.h"
36
#include "paddle/fluid/framework/load_op_lib.h"
Y
Yi Wang 已提交
37 38 39
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/framework/op_info.h"
41
#include "paddle/fluid/framework/op_registry.h"
42
#include "paddle/fluid/framework/op_version_registry.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
45
#include "paddle/fluid/framework/reader.h"
H
hong 已提交
46
#include "paddle/fluid/framework/save_load_util.h"
S
sneaxiy 已提交
47
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
48
#include "paddle/fluid/framework/selected_rows.h"
49
#include "paddle/fluid/framework/tensor_util.h"
50
#include "paddle/fluid/framework/trainer.h"
51
#include "paddle/fluid/framework/type_defs.h"
X
Xin Pan 已提交
52
#include "paddle/fluid/framework/version.h"
H
hong 已提交
53
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
54
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
55
#include "paddle/fluid/memory/allocation/mmap_allocator.h"
D
dzhwinter 已提交
56
#include "paddle/fluid/operators/activation_op.h"
L
Leo Chen 已提交
57
#include "paddle/fluid/operators/common_infer_shape_functions.h"
S
sneaxiy 已提交
58
#include "paddle/fluid/operators/py_func_op.h"
59
#include "paddle/fluid/platform/cpu_helper.h"
Y
Yu Yang 已提交
60
#include "paddle/fluid/platform/cpu_info.h"
61
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
Y
Yi Wang 已提交
62
#include "paddle/fluid/platform/enforce.h"
63
#include "paddle/fluid/platform/init.h"
H
hutuxian 已提交
64
#include "paddle/fluid/platform/monitor.h"
Y
Yi Wang 已提交
65 66
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
H
hutuxian 已提交
67
#include "paddle/fluid/pybind/box_helper_py.h"
68
#include "paddle/fluid/pybind/compatible.h"
Y
Yi Wang 已提交
69
#include "paddle/fluid/pybind/const_value.h"
D
dongdaxiang 已提交
70
#include "paddle/fluid/pybind/data_set_py.h"
Y
Yi Wang 已提交
71
#include "paddle/fluid/pybind/exception.h"
D
dongdaxiang 已提交
72
#include "paddle/fluid/pybind/fleet_wrapper_py.h"
Y
yaoxuefeng 已提交
73
#include "paddle/fluid/pybind/generator_py.h"
74
#include "paddle/fluid/pybind/global_value_getter_setter.h"
75
#include "paddle/fluid/pybind/gloo_context_py.h"
76
#include "paddle/fluid/pybind/gloo_wrapper_py.h"
T
Thunderbrook 已提交
77
#include "paddle/fluid/pybind/heter_wrapper_py.h"
78
#include "paddle/fluid/pybind/imperative.h"
F
flame 已提交
79
#include "paddle/fluid/pybind/inference_api.h"
F
flame 已提交
80
#include "paddle/fluid/pybind/ir.h"
T
Thunderbrook 已提交
81
#include "paddle/fluid/pybind/ps_gpu_wrapper_py.h"
82
#include "paddle/fluid/pybind/pybind_boost_headers.h"
83

84
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
85
#include "paddle/fluid/pybind/nccl_wrapper_py.h"
W
wopeizl 已提交
86
#endif
87
#include "paddle/fluid/framework/data_type.h"
88 89
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
S
sneaxiy 已提交
90
#include "paddle/fluid/pybind/reader_py.h"
Y
Yi Wang 已提交
91
#include "paddle/fluid/pybind/tensor_py.h"
92
#include "paddle/fluid/string/to_string.h"
D
Dong Zhihong 已提交
93
#ifdef PADDLE_WITH_CUDA
94
#ifdef PADDLE_WITH_NCCL
Y
Yi Wang 已提交
95
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
96
#endif
Y
Yi Wang 已提交
97 98
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
99 100
#endif

101 102 103 104
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/platform/xpu_info.h"
#endif

Y
Yanghello 已提交
105 106 107 108
#ifdef PADDLE_WITH_CRYPTO
#include "paddle/fluid/pybind/crypto.h"
#endif

T
tangwei12 已提交
109 110 111 112
#ifdef PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/pybind/fleet_py.h"
#endif

M
minqiyang 已提交
113 114
#include "pybind11/stl.h"

115
DECLARE_bool(use_mkldnn);
116

Q
Qiao Longfei 已提交
117 118
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);
119 120 121
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchUnmergedList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchList);
PYBIND11_MAKE_OPAQUE(paddle::framework::FetchType);
Q
Qiao Longfei 已提交
122

123
namespace paddle {
124
namespace pybind {
125
bool IsCompiledWithCUDA() {
126
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
127 128 129 130 131 132
  return false;
#else
  return true;
#endif
}

133 134 135 136 137 138 139 140
bool IsCompiledWithXPU() {
#ifndef PADDLE_WITH_XPU
  return false;
#else
  return true;
#endif
}

141 142 143 144 145 146 147 148
bool IsCompiledWithMKLDNN() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  return true;
#endif
}

149 150 151 152 153 154 155 156 157 158 159
bool SupportsBfloat16() {
#ifndef PADDLE_WITH_MKLDNN
  return false;
#else
  if (platform::MayIUse(platform::cpu_isa_t::avx512_core))
    return true;
  else
    return false;
#endif
}

160
bool IsCompiledWithBrpc() {
161
#ifndef PADDLE_WITH_DISTRIBUTE
162 163
  return false;
#endif
164 165 166 167 168 169

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
170 171
}

Y
update  
Yancey1989 已提交
172
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
173
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
174 175 176 177 178 179
  return true;
#else
  return false;
#endif
}

S
sneaxiy 已提交
180 181 182 183 184 185 186 187 188 189
template <typename PlaceType1, typename PlaceType2>
static inline bool IsSamePlace(const PlaceType1 &p1, const PlaceType2 &p2) {
  return paddle::platform::Place(p1) == paddle::platform::Place(p2);
}

template <typename PlaceType>
static inline int PlaceIndex(const PlaceType &p) {
  return static_cast<int>(paddle::platform::Place(p).which());
}

H
hong 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
static PyObject *GetPythonAttribute(PyObject *obj, const char *attr_name) {
  // NOTE(zjl): PyObject_GetAttrString would return nullptr when attr_name
  // is not inside obj, but it would also set the error flag of Python.
  // If the error flag is set in C++, C++ code would not raise Exception,
  // but Python would raise Exception once C++ call ends.
  // To avoid unexpected Exception raised in Python, we check whether
  // attribute exists before calling PyObject_GetAttrString.
  //
  // Caution: PyObject_GetAttrString would increase reference count of PyObject.
  // Developer should call Py_DECREF manually after the attribute is not used.
  if (PyObject_HasAttrString(obj, attr_name)) {
    return PyObject_GetAttrString(obj, attr_name);
  } else {
    return nullptr;
  }
}

template <typename T>
static T PyObjectCast(PyObject *obj) {
  try {
    return py::cast<T>(py::handle(obj));
  } catch (py::cast_error &) {
212 213 214
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Python object is not type of %s, the real type is %s",
        typeid(T).name(), obj->ob_type->tp_name));
H
hong 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227
  }
}

using PyNameVarBaseMap = std::unordered_map<std::string, py::handle>;

static std::vector<std::shared_ptr<imperative::VarBase>> GetVarBaseList(
    const PyNameVarBaseMap &state_dict) {
  std::vector<std::shared_ptr<imperative::VarBase>> vec_res;
  vec_res.reserve(state_dict.size());

  for (auto &para : state_dict) {
    PyObject *py_obj = para.second.ptr();
    if (!py_obj || py_obj == Py_None) {
228 229
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The parameter [%s] to save is None", para.first));
H
hong 已提交
230 231
    }
    vec_res.emplace_back(
232
        PyObjectCast<std::shared_ptr<imperative::VarBase>>(py_obj));
H
hong 已提交
233 234 235 236 237 238 239 240 241 242 243 244
  }

  return vec_res;
}

static std::vector<std::string> inline GetNameList(
    const py::handle &py_handle) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
245 246
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameter list to save is None"));
H
hong 已提交
247 248 249 250 251 252 253 254 255 256 257 258
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
259 260 261
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to save is None"));
H
hong 已提交
262 263 264 265
      vec_res.emplace_back(PyObjectCast<std::string>(py_name));
      Py_DECREF(py_name);
    }
  } else {
266 267
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to save is not a list"));
H
hong 已提交
268 269 270 271
  }
  return vec_res;
}

272 273 274 275 276 277 278 279
static void inline CreateVariableIfNotExit(
    const py::handle &py_handle, const framework::Scope &scope,
    const framework::Executor *exe = nullptr) {
  std::vector<std::string> vec_res;

  PyObject *py_obj = py_handle.ptr();  // get underlying PyObject
  // Python None is not nullptr in C++!
  if (!py_obj || py_obj == Py_None) {
280 281
    PADDLE_THROW(
        platform::errors::InvalidArgument("The parameter list to set is None"));
282 283 284 285 286 287 288 289 290 291 292 293 294
  }

  if (PyList_Check(py_obj)) {
    size_t len = PyList_GET_SIZE(py_obj);

    vec_res.reserve(len);

    const char *kNameField = "name";
    const char *kVarDescField = "desc";

    for (size_t i = 0; i < len; ++i) {
      PyObject *py_name =
          PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kNameField);
295 296 297
      PADDLE_ENFORCE_NOT_NULL(py_name,
                              platform::errors::InvalidArgument(
                                  "The name of parameter to set is None"));
298 299 300 301 302
      auto para_name = PyObjectCast<std::string>(py_name);
      Py_DECREF(py_name);

      auto var = scope.FindVar(para_name);
      if (var == nullptr) {
303 304 305 306 307
        PADDLE_ENFORCE_NOT_NULL(exe,
                                platform::errors::InvalidArgument(
                                    "Parameter not Initialized, "
                                    "Please set argument [executor] not None "
                                    "or run startup program first"));
308 309
        PyObject *py_var_desc =
            PyObject_GetAttrString(PyList_GET_ITEM(py_obj, i), kVarDescField);
310 311 312
        PADDLE_ENFORCE_NOT_NULL(
            py_var_desc, platform::errors::InvalidArgument(
                             "The var_desc of parameter to set is None"));
313 314 315 316 317 318 319 320 321
        auto var_desc = PyObjectCast<framework::VarDesc>(py_var_desc);
        Py_DECREF(py_var_desc);
        var = const_cast<framework::Scope *>(&scope)->Var(para_name);
        auto *tensor_temp = var->GetMutable<framework::LoDTensor>();
        tensor_temp->Resize(framework::make_ddim(var_desc.GetShape()));
        tensor_temp->mutable_data(exe->GetPlace(), var_desc.GetDataType());
      }
    }
  } else {
322 323
    PADDLE_THROW(platform::errors::InvalidArgument(
        "The parameters to set is not a list"));
324 325 326 327 328
  }

  return;
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
static void AssertStaticGraphAndDygraphGradMakerNoDiff() {
  std::set<std::string> ops;
  for (auto &pair : framework::OpInfoMap::Instance().map()) {
    bool has_static_grad_maker = (pair.second.grad_op_maker_ != nullptr);
    bool has_dygraph_grad_maker =
        (pair.second.dygraph_grad_op_maker_ != nullptr);
    if (has_static_grad_maker ^ has_dygraph_grad_maker) {
      bool has_kernel =
          (framework::OperatorWithKernel::AllOpKernels().count(pair.first) > 0);
      if (has_kernel) {
        ops.insert(pair.first);
      } else {
        VLOG(5) << pair.first << " has no kernels, skip";
      }
    }
  }
  PADDLE_ENFORCE_EQ(ops.empty(), true,
                    platform::errors::Unimplemented(
                        "OperatorWithKernel [%s] have only static graph grad "
                        "maker or have only dygraph grad maker, which is not "
                        "allowed",
                        string::join_strings(ops, ',')));
}

353 354 355 356 357 358
#ifdef PADDLE_WITH_AVX
PYBIND11_MODULE(core_avx, m) {
#else
PYBIND11_MODULE(core_noavx, m) {
#endif

Y
Yu Yang 已提交
359 360 361
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
362
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
S
sneaxiy 已提交
363

364 365
  AssertStaticGraphAndDygraphGradMakerNoDiff();

366
  m.doc() = "C++ core of PaddlePaddle";
367

368 369 370 371
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

372
  BindException(&m);
Y
Yu Yang 已提交
373

374 375
  m.def("set_num_threads", &platform::SetNumThreads);

376 377 378 379
#ifdef PADDLE_WITH_CUDA
  m.def("cudnn_version", &platform::CudnnVersion);
#endif

6
633WHU 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
  m.def("from_dlpack", [](py::capsule *dltensor) {
    DLManagedTensor *dmt = reinterpret_cast<DLManagedTensor *>(
        PyCapsule_GetPointer(dltensor->ptr(), "dltensor"));
    PyCapsule_SetName(dltensor->ptr(), "used_dltensor");
    DLTensor dl = dmt->dl_tensor;
    Tensor tensor;

    if (dl.ctx.device_type == kDLCPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#ifdef PADDLE_WITH_CUDA
    if (dl.ctx.device_type == kDLGPU) {
      paddle::framework::TensorFromDLPack(dl, &tensor);
    }
#endif
    return tensor;
  });

H
hong 已提交
398 399 400 401 402 403 404 405 406
  m.def("_save_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
           const Scope &scope) {
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
          SaveStaticNameListToDisk(str_file_name, vec_name_list, scope);
        });

  m.def("_load_static_dict",
        [](const std::string &str_file_name, const py::handle &vec_var_list,
407
           const Scope &scope, const Executor *executor) {
H
hong 已提交
408
          std::vector<std::string> vec_name_list = GetNameList(vec_var_list);
409
          CreateVariableIfNotExit(vec_var_list, scope, executor);
H
hong 已提交
410 411 412
          LoadStaticNameListFromDisk(str_file_name, vec_name_list, scope);
        });

413 414 415 416 417 418
  m.def("_create_loaded_parameter",
        [](const py::handle &vec_var_list, const Scope &scope,
           const Executor *executor) {
          CreateVariableIfNotExit(vec_var_list, scope, executor);
        });

H
hong 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
  m.def("_save_dygraph_dict", [](const std::string &str_file_name,
                                 const PyNameVarBaseMap &state_dict) {
    auto vec_var_base_list = GetVarBaseList(state_dict);

    SaveDygraphVarBaseListToDisk(str_file_name, vec_var_base_list);
  });

  m.def("_load_dygraph_dict", [](const std::string &str_file_name) {
    auto load_tensor = LoadDygraphVarBaseListFromDisk(str_file_name);

    std::unordered_map<std::string, std::shared_ptr<imperative::VarBase>>
        map_output;

    for (size_t i = 0; i < load_tensor.size(); ++i) {
      map_output.emplace(load_tensor[i]->Name(), load_tensor[i]);
    }

    return map_output;
  });
6
633WHU 已提交
438

439 440 441 442 443 444
  m.def("save_op_version_info", [](framework::ProgramDesc &desc) {
    framework::compatible::pb::OpVersionMap pb_vmap{desc.OpVersionMap()};
    framework::compatible::SaveOpVersions(
        framework::compatible::OpVersionRegistrar::GetInstance()
            .GetVersionMap(),
        &pb_vmap);
445 446
  });

447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  m.def("set_printoptions", [](const py::kwargs &kwargs) {
    auto &print_opt = framework::PrintOptions::Instance();
    if (kwargs.contains("precision")) {
      print_opt.precision = kwargs["precision"].cast<int>();
    }
    if (kwargs.contains("threshold")) {
      print_opt.threshold = kwargs["threshold"].cast<int>();
    }
    if (kwargs.contains("edgeitems")) {
      print_opt.edgeitems = kwargs["edgeitems"].cast<int>();
    }
    if (kwargs.contains("linewidth")) {
      print_opt.linewidth = kwargs["linewidth"].cast<int>();
    }
    if (kwargs.contains("sci_mode")) {
      print_opt.sci_mode = kwargs["sci_mode"].cast<bool>();
    }

    VLOG(4) << "Set printoptions: precision=" << print_opt.precision
            << ", threshold=" << print_opt.threshold
            << ", edgeitems=" << print_opt.edgeitems
            << ", linewidth=" << print_opt.linewidth
            << ", sci_mode=" << print_opt.sci_mode;
  });

L
Leo Chen 已提交
472 473 474 475 476 477
  m.def("broadcast_shape", [](const std::vector<int64_t> &x_dim,
                              const std::vector<int64_t> &y_dim) {
    return vectorize(operators::details::BroadcastTwoDims(
        make_ddim(x_dim), make_ddim(y_dim), -1));
  });

S
sneaxiy 已提交
478
  m.def(
S
sneaxiy 已提交
479
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
480 481 482 483
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
484 485 486
  m.def("_get_use_default_grad_op_desc_maker_ops",
        [] { return OpInfoMap::Instance().GetUseDefaultGradOpDescMakerOps(); });

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
  m.def("_get_all_register_op_kernels", [] {
    auto &all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();
    std::unordered_map<std::string, std::vector<std::string>> all_kernels_info;
    for (auto &kernel_pair : all_kernels) {
      auto op_type = kernel_pair.first;
      std::vector<std::string> kernel_types;
      for (auto &info_pair : kernel_pair.second) {
        paddle::framework::OpKernelType kernel_type = info_pair.first;
        kernel_types.push_back(
            paddle::framework::KernelTypeToString(kernel_type));
      }
      all_kernels_info.emplace(op_type, kernel_types);
    }
    return all_kernels_info;
  });

S
sneaxiy 已提交
503 504 505
  // NOTE(zjl): ctest would load environment variables at the beginning even
  // though we have not `import paddle.fluid as fluid`. So we add this API
  // to enable eager deletion mode in unittest.
S
sneaxiy 已提交
506
  m.def("_set_eager_deletion_mode", &paddle::framework::SetEagerDeletionMode);
S
sneaxiy 已提交
507

508
  m.def("_set_fuse_parameter_group_size",
509
        &paddle::framework::ir::SetFuseParameterGroupsSize);
510
  m.def("_set_fuse_parameter_memory_size",
511
        &paddle::framework::ir::SetFuseParameterMemorySize);
512

S
sneaxiy 已提交
513 514 515
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

516 517
  m.def("_set_paddle_lib_path", &paddle::platform::dynload::SetPaddleLibPath);

518 519 520
  m.def("_promote_types_if_complex_exists",
        &paddle::framework::PromoteTypesIfComplexExists);

521
  BindImperative(&m);
522

523
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
524
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
S
sneaxiy 已提交
525 526
      .def("_is_initialized",
           [](const Tensor &self) { return self.IsInitialized(); })
Y
yuyang18 已提交
527
      .def("_get_dims",
528
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
529
      .def("_set_dims",
Q
qijun 已提交
530
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
531
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
532
           })
Y
yuyang18 已提交
533
      .def("_set_layout",
D
dzhwinter 已提交
534 535 536
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
537
      .def("_alloc_float",
D
dzhwinter 已提交
538
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
539
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
540
           })
541 542 543 544
      .def("_alloc_float",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<float>(place);
           })
Y
yuyang18 已提交
545
      .def("_alloc_float",
Y
Yu Yang 已提交
546
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
547
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
548
           })
549 550 551 552
      .def("_alloc_double",
           [](Tensor &self, paddle::platform::CPUPlace &place) {
             self.mutable_data<double>(place);
           })
Y
yuyang18 已提交
553
      .def("_alloc_int",
Y
Yu Yang 已提交
554
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
555
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
556
           })
557 558 559 560
      .def("_alloc_int",
           [](Tensor &self, paddle::platform::XPUPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
561
      .def("_alloc_int",
D
dzhwinter 已提交
562
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
563
             self.mutable_data<int>(place);
Q
qijun 已提交
564
           })
Y
yuyang18 已提交
565
      .def("_alloc_int",
C
chengduoZH 已提交
566 567 568
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
569
      .def("_alloc_float",
C
chengduoZH 已提交
570 571 572
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
573 574 575 576 577
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
578 579 580 581 582
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::XPUPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
583 584 585 586 587 588 589 590 591 592
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
      .def("_mutable_data",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place,
              paddle::framework::proto::VarType::Type type) {
             return reinterpret_cast<uintptr_t>(self.mutable_data(place, type));
           })
Z
Zeng Jinle 已提交
593
      .def("_clear", &Tensor::clear)
594
      .def("set", SetTensorFromPyArray<paddle::platform::CPUPlace>,
595
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
596 597
      .def("set", SetTensorFromPyArray<paddle::platform::XPUPlace>,
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
598
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPlace>,
599
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false)
600
      .def("set", SetTensorFromPyArray<paddle::platform::CUDAPinnedPlace>,
601 602
           py::arg("array"), py::arg("place"), py::arg("zero_copy") = false,
           R"DOC(
L
Leo Chen 已提交
603 604 605 606
        Set the data of LoDTensor on place with given numpy array.
        
        Args:
          lod (numpy.ndarray): The data to set.
607
          place (CPUPlace|CUDAPlace|XPUPlace|CUDAPinnedPlace): The place where the 
L
Leo Chen 已提交
608
          LoDTensor is to be set.
609 610
          zero_copy (bool, optional): Whether to share memory with the input numpy array.
          This parameter only works with CPUPlace. Default: False.
L
Leo Chen 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623

        Returns:
            None.

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                t = fluid.LoDTensor()
                t.set(np.ndarray([5, 30]), fluid.CPUPlace())
          )DOC")
624

L
Leo Chen 已提交
625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); }, R"DOC(
           Return the shape of LoDTensor.

           Returns:
               list[int]: The shape of LoDTensor.


           Examples:
               .. code-block:: python

                  import paddle.fluid as fluid
                  import numpy as np

                  t = fluid.LoDTensor()
                  t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                  print(t.shape())  # [5, 30]
           )DOC")
6
633WHU 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
      .def("_to_dlpack",
           [](Tensor &self) {
             DLPackTensor dlpack_tensor(self, 1);
             DLManagedTensor *dmt =
                 dlpack_tensor.ToCudfCompatibleDLManagedTensor();
             auto capsule = py::capsule(
                 static_cast<void *>(dmt), "dltensor", [](PyObject *ptr) {
                   if (ptr) {
                     auto dltensor = new DLManagedTensor;
                     try {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "used_dltensor"));
                       return;
                     } catch (...) {
                       dltensor = reinterpret_cast<DLManagedTensor *>(
                           PyCapsule_GetPointer(ptr, "dltensor"));
                     }
                     dltensor->deleter(dltensor);
                   }
                 });
             return capsule;
           })
Y
yuyang18 已提交
664 665 666 667
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
X
xuezhong 已提交
668
      .def("_place", [](Tensor &self) { return self.place(); })
W
wopeizl 已提交
669
      .def("_dtype", [](Tensor &self) { return self.type(); })
670 671
      .def("_layout",
           [](Tensor &self) { return DataLayoutToString(self.layout()); })
672
      .def("_share_data_with", &Tensor::ShareDataWith)
673 674 675 676 677 678
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference)
      .def("__str__", [](const Tensor &self) {
        std::stringstream ostr;
        ostr << self;
        return ostr.str();
      });
Y
Yu Yang 已提交
679

L
Leo Chen 已提交
680
  // TODO(cql): add reference: en_user_guide_lod_tensor
X
Xin Pan 已提交
681
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
L
Leo Chen 已提交
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    LoDTensor is a Tensor with optional LoD (Level of Details) information, 
    it can be used for variable-length sequences, 
    see :ref:`user_guide_lod_tensor` for details.

    LoDTensor can be converted to numpy array using :code:`numpy.array(lod_tensor)`.

    You can skip the following explanation if you don't need to know details 
    of LoDTensor.

    The following two examples show how to use LODtensor to represent 
    variable-length sequences.
    
    Example 1:
    
    Suppose x is a LoDTensor representing a variable-length sequence. 
    It contains two logical subsequences, the length of first logical sequence 
    is 2 (e.g., number of samples is 2), the length of second logical sequence 
    is 3, and the total length is 5. The data of the first logical sequence is 
    [1, 2], [3, 4], and the data of the second logical sequence is [5, 6], 
    [7, 8], [9, 10]. The data dimension of each sample is 2. So, the final 
    shape of the LoDTensor is [5, 2], of which 5 is the total length and 2 is 
    the dimension of each sample.
    
    Logically, we can represent the variable-length sequence in two ways: one 
    is in the form of recursive sequence lengths, that is, 
    x.recursive_sequence_lengths=[[2, 3]]; the other is in the form of offsets, 
    that is, x.lod=[[0, 2, 2+3]]. These two representations are equivalent, and 
    you can set and retrieve recursive_sequence_lengths or LoD through the 
    corresponding interfaces of LoDTensor introduced later.

    Actually, in order to access sequence faster, Paddle uses offset to store 
    different lengths of sequences. 
    Therefore, the operations on recursive_sequence_lengths will be converted 
    to the operations on LoD eventually.
    
    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]

    Example 2:

    LoD may have more than one level (for example, a paragraph may have more 
    than one sentence and a sentence may have more than one word). Suppose y 
    is a LoDTensor and its lod_level is 2. 
    From level = 0, there are two logical sequences, the length of which is 
    2 and 1, respectively, indicating that the first logical sequence contains 
    two sub-sequences and the second logical sequence contains one sub-sequence. 
    From level = 1, the lengths of two sub-sequences contained by the first 
    logical sequence is 2 and 2, and the length of sub-sequence contained by 
    the second logical sequence is 3.
      
    Therefore, the LoDTensor is represented in the form of recursive sequence 
    lengths as y.recursive_sequence_lengths=[[2,1], [2,2,3]]; and equally, in 
    the form of offset, it is represented as y.lod=[[0,2,3], [0,2,4,7]].

    .. code-block:: python

      y.data = [[1, 2], [3, 4],
                [5, 6], [7, 8],
                [9, 10], [11, 12], [13, 14]]

      y.shape = [2+2+3, 2]

      y.recursive_sequence_lengths = [[2, 1], [2, 2, 3]]

      y.lod = [[0, 2, 3], [0, 2, 4, 7]]
Z
Zeng Jinle 已提交
756 757 758 759 760 761 762

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          t = fluid.LoDTensor()
X
Xin Pan 已提交
763 764

        )DOC")
765
      .def("__array__", [](Tensor &self) { return TensorToPyArray(self); })
766 767 768 769 770 771 772 773 774
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
775 776
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, -1), true,
777 778 779 780
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is %s",
                     new_lod));
781 782
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
783
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
784
      // We implement offset based LOD in C++ while we use length based with
H
hong 已提交
785 786
      // Python API. So we changed set_lod to set_recursive_sequence_lengths
      // to
G
gongweibao 已提交
787 788 789
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
790
      .def("set_lod",
791
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
792
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
793
             LoD new_lod;
794 795
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
C
chengduo 已提交
796 797
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_lod, vectorize(self.dims()).front()), true,
798 799
                 platform::errors::InvalidArgument(
                     "The provided LoD is invalid, the LoD is %s", new_lod));
800
             self.set_lod(new_lod);
S
sneaxiy 已提交
801 802 803 804 805
           },
           py::arg("lod"), R"DOC(
           Set LoD of the LoDTensor.

           Args:
L
Leo Chen 已提交
806 807 808 809
               lod (list[list[int]]): The lod to set.

           Returns:
                None.
Z
Zeng Jinle 已提交
810 811 812 813 814 815 816 817 818 819

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
L
Leo Chen 已提交
820
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
821
           )DOC")
822 823 824 825 826 827 828 829 830 831 832
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
C
chengduo 已提交
833 834
             PADDLE_ENFORCE_EQ(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()), true,
835 836 837 838 839
                 platform::errors::InvalidArgument(
                     "The provided recursive_sequence_lengths info is invalid, "
                     "the LoD converted by recursive_sequence_lengths is "
                     "%s",
                     new_lod));
840
             self.set_lod(new_offset_lod);
S
sneaxiy 已提交
841 842
           },
           py::arg("recursive_sequence_lengths"), R"DOC(
L
Leo Chen 已提交
843
           Set LoD of the LoDTensor according to recursive sequence lengths.
S
sneaxiy 已提交
844

L
Leo Chen 已提交
845
           For example, if recursive_sequence_lengths=[[2, 3]], which means
846
           there are two sequences with length 2 and 3 respectively, the
L
Leo Chen 已提交
847
           corresponding lod would be [[0, 2, 2+3]], i.e., [[0, 2, 5]].
S
sneaxiy 已提交
848 849

           Args:
L
Leo Chen 已提交
850 851 852 853
                recursive_sequence_lengths (list[list[int]]): The recursive sequence lengths.
           
           Returns:
                None.
Z
Zeng Jinle 已提交
854 855 856 857 858 859 860 861 862 863

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
L
Leo Chen 已提交
864 865
                 print(t.recursive_sequence_length())  # [[2, 3]]
                 print(t.lod())  # [[0, 2, 5]]
S
sneaxiy 已提交
866
           )DOC")
867 868 869 870 871 872 873 874
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
875 876 877 878 879
           },
           R"DOC(
           Return the LoD of the LoDTensor.

           Returns:
L
Leo Chen 已提交
880 881
               list[list[int]]: The lod of the LoDTensor.
           
Z
Zeng Jinle 已提交
882 883 884 885 886 887 888 889 890 891
           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_lod([[0, 2, 5]])
                 print(t.lod()) # [[0, 2, 5]]
S
sneaxiy 已提交
892
           )DOC")
G
gongweibao 已提交
893
      // Set above comments of set_lod.
894 895 896 897 898 899 900 901
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
S
sneaxiy 已提交
902 903
           },
           R"DOC(
L
Leo Chen 已提交
904 905
           Return the recursive sequence lengths corresponding to of the LodD 
           of the LoDTensor.
S
sneaxiy 已提交
906 907

           Returns:
L
Leo Chen 已提交
908
                list[list[int]]: The recursive sequence lengths.
Z
Zeng Jinle 已提交
909 910 911 912 913 914 915 916 917 918 919

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.recursive_sequence_lengths()) # [[2, 3]]
S
sneaxiy 已提交
920 921 922 923 924 925 926 927
           )DOC")
      .def("has_valid_recursive_sequence_lengths",
           [](LoDTensor &self) -> bool {
             // Check that the lod info is valid and match the outermost
             // dimension of the LoDTensor data
             return CheckLoD(self.lod(), vectorize(self.dims()).front());
           },
           R"DOC(
L
Leo Chen 已提交
928
           Check whether the LoD of the LoDTensor is valid.
S
sneaxiy 已提交
929 930

           Returns:
L
Leo Chen 已提交
931
               bool: Whether the LoD is valid.
Z
Zeng Jinle 已提交
932 933 934 935 936 937 938 939 940 941 942

           Examples:
               .. code-block:: python

                 import paddle.fluid as fluid
                 import numpy as np

                 t = fluid.LoDTensor()
                 t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                 t.set_recursive_sequence_lengths([[2, 3]])
                 print(t.has_valid_recursive_sequence_lengths()) # True
W
wopeizl 已提交
943 944 945 946 947 948 949
           )DOC")
      .def("__getitem__", PySliceTensor, py::return_value_policy::reference,
           R"DOC(
           Slice the original Tensor, and remove the LoD information.

           Returns:
               out (Tensor): new Tensor(NOT LoDTensor).
950
           )DOC")
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
      .def("__str__",
           [](const LoDTensor &self) {
             std::stringstream ostr;
             ostr << self;
             return ostr.str();
           })
      .def("_copy", [](const LoDTensor &self, const platform::Place &place) {
        // follow fetch_op's inplementation
        LoDTensor dst;
        if (self.IsInitialized() && self.numel() > 0) {
          TensorCopySync(self, place, &dst);
        } else {
          // Not copy, if the src tensor is empty.
          dst.clear();
          dst.Resize({0});
        }
        dst.set_lod(self.lod());
        return dst;
969
#ifdef _WIN32
970
      });
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
#else
           })
      .def(py::pickle(
          [](const LoDTensor &t) {  // __getstate__
            auto holder = t.Holder();
            PADDLE_ENFORCE_EQ(
              platform::is_cpu_place(holder->place()), true,
              platform::errors::PreconditionNotMet(
                  "LoDTensor is not on CPU."
                  "Now only LoDTensor on CPU can be serialized."));
            auto* mmap_writer_allocation =
              dynamic_cast<memory::allocation::MemoryMapWriterAllocation *>(
                holder.get());
            PADDLE_ENFORCE_NOT_NULL(mmap_writer_allocation,
              platform::errors::PreconditionNotMet(
                "LoDTensor is not in shared memory."
                "Now only LoDTensor on shared memory can be serialized."));
            int type_idx = static_cast<int>(t.type());

            return py::make_tuple(mmap_writer_allocation->ipc_name(),
                                  mmap_writer_allocation->size(),
                                  type_idx, vectorize(t.dims()), t.lod());
          },
          [](py::tuple t) {  // __setstate__
            if (t.size() != 5)
              throw std::runtime_error("Invalid LoDTensor state!");

            // 1. Create a new C++ instance
            LoDTensor tensor;

            // 2. Rebuild Allocation
            const std::string &ipc_name = t[0].cast<std::string>();
            size_t size = t[1].cast<size_t>();
            auto shared_reader_holder =
              memory::allocation::RebuildMemoryMapReaderAllocation(
                ipc_name, size);

            // 3. Maintain global fd set
            VLOG(3) << "LoDTensor ipc name: " << ipc_name;
            memory::allocation::MemoryMapFdSet::Instance().Insert(ipc_name);

            // 4. Rebuild LoDTensor
            tensor.ResetHolderWithType(shared_reader_holder,
              static_cast<proto::VarType::Type>(t[2].cast<int>()));
            tensor.Resize(make_ddim(t[3].cast<std::vector<int>>()));
            tensor.set_lod(t[4].cast<framework::LoD>());

            return tensor;
          }));
#endif
D
dangqingqing 已提交
1021

Q
qijun 已提交
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
1033 1034
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
1035 1036
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
1037 1038 1039 1040 1041 1042 1043 1044 1045
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
1046
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
1047
      .def("rows", [](SelectedRows &self) {
1048 1049 1050 1051 1052
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
1053
      });
Q
qijun 已提交
1054

1055
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
1056 1057 1058

All parameter, weight, gradient are variables in Paddle.
)DOC")
S
sneaxiy 已提交
1059
      .def(py::init<>())
1060
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
1061
      .def("set_int",
1062 1063
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
1064 1065 1066 1067 1068 1069 1070
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
1071
      .def("get_tensor",
1072 1073
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
1074 1075
           },
           py::return_value_policy::reference)
1076 1077 1078 1079
      .def("get_bytes",
           [](Variable &self) {
             return py::bytes(*self.GetMutable<std::string>());
           })
Y
Yu Yang 已提交
1080 1081 1082
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
1083 1084 1085 1086 1087
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1088 1089 1090
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
1091 1092 1093
      .def("get_fetch_list",
           [](Variable &self) { return self.GetMutable<FetchList>(); },
           py::return_value_policy::reference)
1094
#if (defined(PADDLE_WITH_NCCL))
D
Dong Zhihong 已提交
1095 1096 1097 1098 1099
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1100
#endif
Y
Refine  
Yu Yang 已提交
1101 1102
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
1103 1104 1105 1106
             PADDLE_ENFORCE_EQ(
                 self.IsType<framework::ReaderHolder>(), true,
                 platform::errors::InvalidArgument(
                     "The variable is not type of ReaderHolder."));
Y
Refine  
Yu Yang 已提交
1107 1108
             return self.GetMutable<framework::ReaderHolder>();
           },
1109 1110 1111 1112 1113
           py::return_value_policy::reference)
      .def("set_scope", [](Variable &self, Scope &scope) {
        auto scope_vec = self.GetMutable<std::vector<framework::Scope *>>();
        scope_vec->emplace_back(&scope);
      });
1114

S
sneaxiy 已提交
1115
  BindReader(&m);
Y
Refine  
Yu Yang 已提交
1116

S
sneaxiy 已提交
1117
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

1131
          import paddle.fluid as fluid
Q
Qiao Longfei 已提交
1132 1133 1134 1135 1136 1137
          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
1138 1139
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
1140
      .def("var",
1141
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
1142
             return self.Var(name);
Y
Yu Yang 已提交
1143
           },
S
sneaxiy 已提交
1144 1145
           py::arg("name"),
           R"DOC(
1146
           Find or create variable named :code:`name` in the current scope.
S
sneaxiy 已提交
1147

1148
           If the variable named :code:`name` does not exist in the
S
sneaxiy 已提交
1149
           current scope, the variable would be created. Otherwise,
1150
           return the existing variable.
S
sneaxiy 已提交
1151 1152

           Args:
1153 1154
               name (str): the variable name.

S
sneaxiy 已提交
1155
           Returns:
1156
               out (core.Variable): the found or created variable.
S
sneaxiy 已提交
1157 1158 1159 1160
           )DOC",
           py::return_value_policy::reference)
      .def("find_var", &Scope::FindVar, py::arg("name"),
           R"DOC(
1161
           Find variable named :code:`name` in the current scope or
1162
           its parent scope. Return None if not found. 
1163

S
sneaxiy 已提交
1164 1165
           Args:
               name (str): the variable name.
1166

S
sneaxiy 已提交
1167
           Returns:
1168
               out (core.Variable|None): the found variable or None.
S
sneaxiy 已提交
1169
           )DOC",
1170
           py::return_value_policy::reference)
1171
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
S
sneaxiy 已提交
1172 1173 1174 1175 1176 1177
           R"DOC(
           Create a new sub-scope of the current scope.

           Returns:
               out (core._Scope): the created sub-scope.
           )DOC",
1178
           py::return_value_policy::reference)
S
sneaxiy 已提交
1179 1180 1181
      .def("drop_kids", &Scope::DropKids,
           R"DOC(
           Delete all sub-scopes of the current scope.
S
sneaxiy 已提交
1182 1183
           )DOC")
      .def("_kids", &Scope::kids);
1184

S
sneaxiy 已提交
1185 1186 1187 1188 1189 1190
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
S
sneaxiy 已提交
1191 1192
        R"DOC(
        Create a new scope.
1193

S
sneaxiy 已提交
1194 1195 1196
        Returns:
            out (core._Scope): the created scope.
        )DOC",
S
sneaxiy 已提交
1197 1198
        py::return_value_policy::reference);

Y
Yu Yang 已提交
1199 1200
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
1201 1202
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
1203 1204 1205 1206
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
C
chengduo 已提交
1207 1208
        PADDLE_ENFORCE_EQ(
            info.Proto().SerializeToString(&str), true,
1209 1210
            platform::errors::Fatal(
                "Serialize OpProto Error. This could be a bug of Paddle."));
1211 1212 1213
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
1214 1215
    return ret_values;
  });
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
  m.def("get_op_attrs_default_value",
        [](py::bytes byte_name) -> paddle::framework::AttributeMap {
          std::string op_type = byte_name;
          paddle::framework::AttributeMap res;
          auto info = OpInfoMap::Instance().GetNullable(op_type);
          if (info != nullptr) {
            if (info->HasOpProtoAndChecker()) {
              auto op_checker = info->Checker();
              res = op_checker->GetAttrsDefaultValuesMap();
            }
          }
          return res;
        });
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
1245 1246 1247
  m.def("has_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasGradOpMaker();
  });
1248 1249 1250 1251 1252
  m.def("has_non_empty_grad_op_maker", [](const std::string op_type) {
    return framework::OpInfoMap::Instance()
        .Get(op_type)
        .HasNonEmptyGradOpMaker();
  });
1253 1254 1255
  m.def("has_infer_inplace", [](const std::string op_type) {
    return framework::OpInfoMap::Instance().Get(op_type).HasInferInplace();
  });
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  m.def("infer_no_need_buffer_slots",
        [](const std::string op_type, const framework::VariableNameMap &inputs,
           const framework::VariableNameMap &outputs,
           const framework::AttributeMap &attrs) {
          auto infer_func = framework::OpInfoMap::Instance()
                                .Get(op_type)
                                .NoNeedBufferVarsInferer();
          if (infer_func) {
            return infer_func(inputs, outputs, attrs);
          } else {
            std::unordered_set<std::string> empty = {};
            return empty;
          }
        });
Y
Yu Yang 已提交
1270
  m.def("prune", [](const ProgramDesc &origin,
1271
                    const std::set<std::string> &feeded_var_names,
1272
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
1273
    ProgramDesc prog_with_targets(origin);
1274

1275
    for (const auto &t : targets) {
1276
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
1277
    }
1278
    proto::ProgramDesc pruned_desc;
1279 1280 1281 1282
    auto pruned_origin_block_id_map =
        Prune(*prog_with_targets.Proto(), feeded_var_names, &pruned_desc);
    return std::make_tuple(ProgramDesc(pruned_desc),
                           pruned_origin_block_id_map);
1283
  });
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
  m.def("prune_backward",
        [](const framework::ProgramDesc &program) {
          return PruneBackward(program);
        },
        R"DOC(
             Prune the backward part of a program, mostly called in
             program.clone(for_test=True).
              
             Args:
                   program (ProgramDesc): The original program.

             Returns:
                   tuple(ProgramDesc, map<int, int>): The first part is 
                   the pruned program desc, and the second part is a map
                   which contains the id pair of pruned block and corresponding
                   origin block.
           )DOC");
1301 1302 1303 1304
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
1305 1306 1307
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
1308 1309
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
1310
  // clang-format off
Y
Yu Yang 已提交
1311
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
1312 1313
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
1314
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
1315 1316
                    return new paddle::platform::CPUDeviceContext();
                  })
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
      .def_static("create",
                  [](paddle::platform::XPUPlace& place)
                      -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_XPU
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use XPUPlace in CPU/GPU version, "
                 "Please recompile or reinstall Paddle with XPU support."));
#else
                    return new paddle::platform::XPUDeviceContext(place);
#endif
                  })
Q
qijun 已提交
1329
      .def_static("create",
D
dzhwinter 已提交
1330
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
1331
                      -> paddle::platform::DeviceContext* {
1332
#ifndef PADDLE_WITH_CUDA
1333 1334 1335 1336
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
Q
qijun 已提交
1337
#else
Q
qijun 已提交
1338
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
1339
#endif
C
chengduoZH 已提交
1340 1341 1342 1343 1344
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
1345 1346 1347 1348
             PADDLE_THROW(
                 platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
C
chengduoZH 已提交
1349 1350 1351 1352
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
1353
// clang-format on
1354
#if defined(PADDLE_WITH_NCCL)
D
Dong Zhihong 已提交
1355 1356
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
1357
  py::class_<platform::CUDAPlace>(m, "CUDAPlace", R"DOC(
1358 1359 1360 1361 1362

    CUDAPlace is a descriptor of a device.
    It represents a GPU device allocated or to be allocated with Tensor or LoDTensor.
    Each CUDAPlace has a dev_id to indicate the graphics card ID represented by the current CUDAPlace,
    staring from 0.
1363
    The memory of CUDAPlace with different dev_id is not accessible.
1364 1365 1366 1367 1368 1369 1370 1371
    Numbering here refers to the logical ID of the visible graphics card, not the actual ID of the graphics card.
    You can set visible GPU devices by setting the `CUDA_VISIBLE_DEVICES` environment variable.
    When the program starts, visible GPU devices will be numbered from 0.
    If `CUDA_VISIBLE_DEVICES` is not set, all devices are visible by default,
    and the logical ID is the same as the actual ID.

    Parameters:
        id (int): GPU device ID.
L
lujun 已提交
1372 1373 1374 1375

    Examples:
        .. code-block:: python

1376 1377 1378
          import paddle

          place = paddle.CUDAPlace(0)
L
lujun 已提交
1379

1380
        )DOC")
S
sneaxiy 已提交
1381 1382 1383
      .def("__init__",
           [](platform::CUDAPlace &self, int dev_id) {
#ifdef PADDLE_WITH_CUDA
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid CUDAPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }

             if (UNLIKELY(dev_id >= platform::GetCUDADeviceCount())) {
               if (platform::GetCUDADeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use GPU because there is no GPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid CUDAPlace(%d), must inside [0, %d), because GPU "
                     "number on your machine is %d",
                     dev_id, platform::GetCUDADeviceCount(),
                     platform::GetCUDADeviceCount());
                 std::exit(-1);
               }
             }

S
sneaxiy 已提交
1408 1409
             new (&self) platform::CUDAPlace(dev_id);
#else
1410 1411 1412 1413 1414 1415 1416 1417 1418
             LOG(ERROR) << string::Sprintf(
                 "Cannot use GPU because you have installed CPU version "
                 "PaddlePaddle.\n"
                 "If you want to use GPU, please try to install GPU version "
                 "PaddlePaddle by: pip install paddlepaddle-gpu\n"
                 "If you only have CPU, please change CUDAPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
S
sneaxiy 已提交
1419 1420
#endif
           })
1421
#ifdef PADDLE_WITH_CUDA
1422 1423
      .def("get_device_id",
           [](const platform::CUDAPlace &self) { return self.GetDeviceId(); })
S
sneaxiy 已提交
1424 1425 1426 1427
      .def("_type", &PlaceIndex<platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::CPUPlace>)
1428
      .def("_equals", &IsSamePlace<platform::CUDAPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1429 1430
      .def("_equals",
           &IsSamePlace<platform::CUDAPlace, platform::CUDAPinnedPlace>)
1431 1432 1433
      .def("_get_device_id",
           [](platform::CUDAPlace &self) -> int { return self.GetDeviceId(); })
#endif
1434
      .def("__repr__", string::to_string<const platform::CUDAPlace &>)
D
dzhwinter 已提交
1435
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
1436

1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
  py::class_<platform::XPUPlace>(m, "XPUPlace", R"DOC(
    **Note**:
    Examples:
        .. code-block:: python
          import paddle.fluid as fluid
          xpu_place = fluid.XPUPlace(0)
        )DOC")
      .def("__init__",
           [](platform::XPUPlace &self, int dev_id) {
#ifdef PADDLE_WITH_XPU
             if (UNLIKELY(dev_id < 0)) {
               LOG(ERROR) << string::Sprintf(
                   "Invalid XPUPlace(%d), device id must be 0 or "
                   "positive integer",
                   dev_id);
               std::exit(-1);
             }
             if (UNLIKELY(dev_id >= platform::GetXPUDeviceCount())) {
               if (platform::GetXPUDeviceCount() == 0) {
                 LOG(ERROR) << "Cannot use XPU because there is no XPU "
                               "detected on your "
                               "machine.";
                 std::exit(-1);
               } else {
                 LOG(ERROR) << string::Sprintf(
                     "Invalid XPUPlace(%d), must inside [0, %d), because XPU "
                     "number on your machine is %d",
                     dev_id, platform::GetXPUDeviceCount(),
                     platform::GetXPUDeviceCount());
                 std::exit(-1);
               }
             }
             new (&self) platform::XPUPlace(dev_id);
#else
             LOG(ERROR) << string::Sprintf(
                 "Cannot use XPU because you have installed CPU/GPU version "
                 "PaddlePaddle.\n"
                 "If you want to use XPU, please try to install XPU version "
                 "PaddlePaddle by: pip install paddlepaddle-xpu\n"
                 "If you only have CPU, please change XPUPlace(%d) to be "
                 "CPUPlace().\n",
                 dev_id);
             std::exit(-1);
#endif
           })
1482
#ifdef PADDLE_WITH_XPU
1483 1484 1485 1486 1487 1488 1489
      .def("_type", &PlaceIndex<platform::XPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::Place>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::XPUPlace, platform::XPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::XPUPlace, platform::CUDAPinnedPlace>)
1490 1491 1492
      .def("get_device_id",
           [](const platform::XPUPlace &self) { return self.GetDeviceId(); })
#endif
1493
      .def("__repr__", string::to_string<const platform::XPUPlace &>)
1494 1495
      .def("__str__", string::to_string<const platform::XPUPlace &>);

1496
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace", R"DOC(
1497
    CPUPlace is a descriptor of a device.
1498
    It represents a CPU device on which a tensor will be allocated and a model will run.
L
lujun 已提交
1499 1500 1501 1502

    Examples:
        .. code-block:: python

1503 1504
          import paddle
          cpu_place = paddle.CPUPlace()
L
lujun 已提交
1505

1506
        )DOC")
1507
      .def(py::init<>())
S
sneaxiy 已提交
1508 1509
      .def("_type", &PlaceIndex<platform::CPUPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::Place>)
1510
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1511 1512 1513 1514
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::CPUPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CPUPlace, platform::CUDAPinnedPlace>)
1515
      .def("__repr__", string::to_string<const platform::CPUPlace &>)
1516
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
1517

1518
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace", R"DOC(
1519 1520 1521 1522 1523 1524
    CUDAPinnedPlace is a descriptor of a device.
    It refers to the page locked memory allocated by the CUDA function `cudaHostAlloc()` in the host memory.
    The host operating system will not paging and exchanging the memory.
    It can be accessed through direct memory access technology to speed up the copy of data between the host and GPU.
    For more information on CUDA data transfer and `pinned memory`,
    please refer to `official document <https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#pinned-memory>`_ .
L
lujun 已提交
1525 1526 1527 1528

    Examples:
        .. code-block:: python

1529 1530
          import paddle
          place = paddle.CUDAPinnedPlace()
L
lujun 已提交
1531

1532
        )DOC")
S
sneaxiy 已提交
1533
      .def("__init__",
S
sneaxiy 已提交
1534
           [](platform::CUDAPinnedPlace &self) {
S
sneaxiy 已提交
1535
#ifndef PADDLE_WITH_CUDA
1536 1537 1538
             PADDLE_THROW(platform::errors::PermissionDenied(
                 "Cannot use CUDAPinnedPlace in CPU only version, "
                 "Please recompile or reinstall Paddle with CUDA support."));
S
sneaxiy 已提交
1539
#endif
S
sneaxiy 已提交
1540
             new (&self) platform::CUDAPinnedPlace();
S
sneaxiy 已提交
1541
           })
S
sneaxiy 已提交
1542 1543 1544 1545
      .def("_type", &PlaceIndex<platform::CUDAPinnedPlace>)
      .def("_equals", &IsSamePlace<platform::CUDAPinnedPlace, platform::Place>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPlace>)
1546 1547
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::XPUPlace>)
S
sneaxiy 已提交
1548 1549 1550 1551
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CPUPlace>)
      .def("_equals",
           &IsSamePlace<platform::CUDAPinnedPlace, platform::CUDAPinnedPlace>)
1552
      .def("__repr__", string::to_string<const platform::CUDAPinnedPlace &>)
C
chengduoZH 已提交
1553 1554
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
1555 1556
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
S
sneaxiy 已提交
1557 1558 1559 1560
      .def("_type", &PlaceIndex<platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::Place>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPlace>)
      .def("_equals", &IsSamePlace<platform::Place, platform::CPUPlace>)
1561
      .def("_equals", &IsSamePlace<platform::Place, platform::XPUPlace>)
S
sneaxiy 已提交
1562
      .def("_equals", &IsSamePlace<platform::Place, platform::CUDAPinnedPlace>)
X
xuezhong 已提交
1563 1564
      .def("is_gpu_place",
           [](platform::Place &self) { return platform::is_gpu_place(self); })
S
sneaxiy 已提交
1565 1566
      .def("is_cpu_place",
           [](platform::Place &self) { return platform::is_cpu_place(self); })
1567 1568
      .def("is_xpu_place",
           [](platform::Place &self) { return platform::is_xpu_place(self); })
S
sneaxiy 已提交
1569 1570 1571 1572
      .def("is_cuda_pinned_place",
           [](platform::Place &self) {
             return platform::is_cuda_pinned_place(self);
           })
X
xuezhong 已提交
1573 1574
      .def("gpu_device_id",
           [](platform::Place &self) {
1575
             return BOOST_GET_CONST(platform::CUDAPlace, self).device;
X
xuezhong 已提交
1576
           })
1577 1578 1579 1580
      .def("xpu_device_id",
           [](platform::Place &self) {
             return BOOST_GET_CONST(platform::XPUPlace, self).device;
           })
S
sneaxiy 已提交
1581 1582
      .def("set_place", [](platform::Place &self,
                           const platform::Place &other) { self = other; })
Y
Yu Yang 已提交
1583 1584 1585 1586
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
1587 1588 1589 1590
      .def("set_place",
           [](platform::Place &self, const platform::XPUPlace &xpu_place) {
             self = xpu_place;
           })
Y
Yu Yang 已提交
1591
      .def("set_place",
D
dzhwinter 已提交
1592
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
1593
             self = gpu_place;
C
chengduoZH 已提交
1594
           })
1595 1596 1597 1598 1599 1600 1601
      .def("set_place",
           [](platform::Place &self,
              const platform::CUDAPinnedPlace &cuda_pinned_place) {
             self = cuda_pinned_place;
           })
      .def("__repr__", string::to_string<const platform::Place &>)
      .def("__str__", string::to_string<const platform::Place &>);
Y
Yu Yang 已提交
1602

Y
Yu Yang 已提交
1603
  py::class_<OperatorBase>(m, "Operator")
C
chengduo 已提交
1604 1605 1606 1607 1608
      .def_static(
          "create",
          [](py::bytes protobin) {
            proto::OpDesc desc;
            PADDLE_ENFORCE_EQ(desc.ParsePartialFromString(protobin), true,
1609 1610 1611 1612 1613 1614 1615
                              platform::errors::InvalidArgument(
                                  "Cannot parse user input to OpDesc"));
            PADDLE_ENFORCE_EQ(
                desc.IsInitialized(), true,
                platform::errors::InvalidArgument(
                    "The provided OpDesc is not initialized, the reason is: %s",
                    desc.InitializationErrorString()));
C
chengduo 已提交
1616 1617
            return OpRegistry::CreateOp(desc);
          })
1618
      .def("run",
1619
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1620
              const platform::CPUPlace &place) { self.Run(scope, place); })
1621 1622 1623
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::XPUPlace &place) { self.Run(scope, place); })
D
dzhwinter 已提交
1624 1625
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
1626
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
1627 1628 1629 1630 1631
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
1632 1633 1634 1635 1636 1637 1638
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
1639 1640
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
1641
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
1642
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
1643 1644 1645 1646
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
1647

1648 1649 1650
  py::class_<framework::ExecutorPrepareContext>(m, "ExecutorPrepareContext")
      .def(py::init<const ProgramDesc &, size_t>());

1651 1652 1653 1654 1655 1656 1657 1658 1659
  py::class_<framework::TrainerBase, std::shared_ptr<framework::TrainerBase>>(
      m, "TrainerBase")
      .def("get_worker_scope",
           [](TrainerBase &self, int thread_id) -> Scope * {
             return self.GetWorkerScope(thread_id);
           },
           py::return_value_policy::reference)
      .def("finalize", &TrainerBase::Finalize);

F
fengjiayi 已提交
1660
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
1661
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
1662
      .def("close", &Executor::Close)
1663 1664
      .def("run_from_dataset", &Executor::RunFromDataset,
           py::call_guard<py::gil_scoped_release>())
D
Dong Daxiang 已提交
1665 1666
      .def("release_trainer", &Executor::ReleaseTrainer,
           py::call_guard<py::gil_scoped_release>())
1667 1668 1669 1670
      .def("init_for_dataset",
           [](Executor &self, const ProgramDesc &prog,
              const std::string &trainer_desc, Scope *scope,
              Dataset *dataset) -> std::shared_ptr<TrainerBase> {
D
Dong Daxiang 已提交
1671
             pybind11::gil_scoped_release release;
1672 1673 1674 1675 1676 1677 1678
             return self.InitForDataset(prog, trainer_desc, scope, dataset);
           })
      .def("run_from_dataset",
           [](Executor &self, std::shared_ptr<TrainerBase> trainer) {
             pybind11::gil_scoped_release release;
             self.RunFromDataset(trainer);
           })
1679 1680 1681
      .def("run_prepared_ctx",
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              std::map<std::string, const LoDTensor *> *feed_targets,
1682
              std::map<std::string, FetchType *> *fetch_targets,
1683 1684 1685 1686 1687 1688 1689 1690
              bool create_local_scope = true, bool create_vars = true,
              const std::string &feed_holder_name = "feed",
              const std::string &fetch_holder_name = "fetch") {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, feed_targets, fetch_targets,
                                     create_local_scope, create_vars,
                                     feed_holder_name, fetch_holder_name);
           })
1691
      .def("run_prepared_ctx",
G
guru4elephant 已提交
1692 1693 1694 1695 1696 1697 1698
           [](Executor &self, ExecutorPrepareContext *ctx, Scope *scope,
              bool create_local_scope = true, bool create_vars = true,
              bool keep_kids = false) {
             pybind11::gil_scoped_release release;
             self.RunPreparedContext(ctx, scope, create_local_scope,
                                     create_vars, keep_kids);
           })
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
      .def("prepare",
           [](Executor &self, const ProgramDesc &program, int block_id,
              const std::vector<std::string> &skip_ref_cnt_vars =
                  std::vector<std::string>(),
              bool force_disable_gc = false) {
             pybind11::gil_scoped_release release;
             return self.Prepare(program, block_id, skip_ref_cnt_vars,
                                 force_disable_gc);
           })
      .def("create_variables", &Executor::CreateVariables)
S
sneaxiy 已提交
1709
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
S
sneaxiy 已提交
1710 1711
                     int block_id, bool create_local_scope, bool create_vars,
                     const std::vector<std::string> &fetch_vars) {
S
sneaxiy 已提交
1712
        pybind11::gil_scoped_release release;
S
sneaxiy 已提交
1713 1714
        self.Run(prog, scope, block_id, create_local_scope, create_vars,
                 fetch_vars);
S
sneaxiy 已提交
1715
      });
S
sneaxiy 已提交
1716

D
dzhwinter 已提交
1717
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
1718
  m.def("init_glog", framework::InitGLOG);
1719
  m.def("load_op_library", framework::LoadOpLib);
1720
  m.def("init_devices", []() { framework::InitDevices(); });
1721

1722
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
1723
  m.def("is_compiled_with_xpu", IsCompiledWithXPU);
1724
  m.def("is_compiled_with_mkldnn", IsCompiledWithMKLDNN);
1725
  m.def("supports_bfloat16", SupportsBfloat16);
1726
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
1727
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
1728 1729 1730
  m.def("_cuda_synchronize", [](const platform::CUDAPlace &place) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
  });
H
hutuxian 已提交
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749

  m.def("get_float_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<float>> float_stats;
    paddle::platform::StatRegistry<float>::Instance().publish(float_stats);
    std::unordered_map<std::string, float> stats_map;
    for (const auto &stat : float_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
  m.def("get_int_stats", []() {
    std::vector<paddle::platform::ExportedStatValue<int64_t>> int_stats;
    paddle::platform::StatRegistry<int64_t>::Instance().publish(int_stats);
    std::unordered_map<std::string, int64_t> stats_map;
    for (const auto &stat : int_stats) {
      stats_map[stat.key] = stat.value;
    }
    return stats_map;
  });
H
hutuxian 已提交
1750 1751 1752 1753 1754 1755 1756
  m.def("run_cmd",
        [](const std::string &cmd, int time_out = -1,
           int sleep_inter = -1) -> const std::string {
          return paddle::framework::shell_get_command_output(cmd, time_out,
                                                             sleep_inter);
        },
        py::arg("cmd"), py::arg("time_out") = -1, py::arg("sleep_inter") = -1);
G
gongweibao 已提交
1757 1758 1759 1760 1761 1762 1763 1764 1765
  m.def("shell_execute_cmd",
        [](const std::string &cmd, int time_out = 0, int sleep_inter = 0,
           bool redirect_stderr = false) -> std::vector<std::string> {
          return paddle::framework::shell_execute_cmd(
              cmd, time_out, sleep_inter, redirect_stderr);
        },
        py::arg("cmd"), py::arg("time_out") = 0, py::arg("sleep_inter") = 0,
        py::arg("redirect_stderr") = false);

1766 1767 1768 1769 1770 1771
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
1772

1773
  m.def("set_feed_variable", framework::SetFeedVariable);
1774 1775 1776 1777 1778
  m.def("get_fetch_variable",
        [](const Scope &scope, const std::string &var_name,
           size_t index) -> py::object {
          auto &var = framework::GetFetchVariable(scope, var_name, index);
          if (data_is_lod_tensor(var)) {
1779
            return py::cast(BOOST_GET(LoDTensor, var));
1780
          } else {
1781
            return py::cast(BOOST_GET(LoDTensorArray, var));
1782 1783
          }
        });
1784
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
1785

X
Xin Pan 已提交
1786 1787
  m.def("_is_program_version_supported", IsProgramVersionSupported);

1788 1789 1790 1791 1792
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
1793
  BindGlobalValueGetterSetter(&m);
Y
Yu Yang 已提交
1794

Y
Yu Yang 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Z
Zeng Jinle 已提交
1804
  py::class_<LoDTensorArray>(m, "LoDTensorArray", R"DOC(
1805
    LoDTensorArray is array of LoDTensor, it supports operator[], len() and for-loop iteration.
Z
Zeng Jinle 已提交
1806 1807 1808

    Examples:
        .. code-block:: python
1809

Z
Zeng Jinle 已提交
1810 1811 1812 1813
          import paddle.fluid as fluid

          arr = fluid.LoDTensorArray()
)DOC")
S
sneaxiy 已提交
1814 1815
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
1816 1817 1818 1819 1820 1821
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
1822 1823 1824 1825
             PADDLE_ENFORCE_LT(i, self.size(),
                               platform::errors::InvalidArgument(
                                   "The index to set is larger than the size "
                                   "of LoDTensorArray."));
Y
Yu Yang 已提交
1826 1827 1828
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
S
sneaxiy 已提交
1829 1830 1831 1832 1833 1834
      .def("append",
           [](LoDTensorArray &self, const LoDTensor &t) {
             self.emplace_back();
             self.back().ShareDataWith(t);
             self.back().set_lod(t.lod());
           },
Z
Zeng Jinle 已提交
1835 1836
           py::arg("tensor"), R"DOC(
             Append a LoDensor to LoDTensorArray.
1837 1838 1839 1840 1841 1842
              
             Args:
                   tensor (LoDTensor): The LoDTensor to be appended.

             Returns:
                   None.
Z
Zeng Jinle 已提交
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853

             Examples:
                 .. code-block:: python

                   import paddle.fluid as fluid
                   import numpy as np

                   arr = fluid.LoDTensorArray()
                   t = fluid.LoDTensor()
                   t.set(np.ndarray([5, 30]), fluid.CPUPlace())
                   arr.append(t)
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
           )DOC")
      .def("_move_to_list",
           [](LoDTensorArray &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               res[i] = py::cast(std::move(self[i]));
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);
Y
Yu Yang 已提交
1865

1866 1867 1868 1869 1870 1871 1872 1873
  py::class_<FetchList>(m, "FetchList", R"DOC( FetchList is a
        vector of boost::variant<LoDTensor, LoDTensorArray>.
        )DOC")
      .def("_move_to_list",
           [](FetchList &self) -> py::list {
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               if (data_is_lod_tensor(self[i])) {
1874
                 auto &data = BOOST_GET(LoDTensor, self[i]);
1875 1876
                 res[i] = py::cast(std::move(data));
               } else {
1877
                 auto &data = BOOST_GET(LoDTensorArray, self[i]);
1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
                 py::list tmp(data.size());
                 for (size_t j = 0; j < data.size(); ++j) {
                   tmp[j] = py::cast(std::move(data[j]));
                 }
                 res[i] = std::move(tmp);
               }
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership)

      .def("append",
           [](FetchList &self, const LoDTensor &t) {
             self.emplace_back();
1893
             auto &lod_tensor = BOOST_GET(LoDTensor, self.back());
1894 1895 1896 1897 1898 1899 1900 1901
             lod_tensor.ShareDataWith(t);
             lod_tensor.set_lod(t.lod());
           },
           py::arg("var"))

      .def("append",
           [](FetchList &self, const LoDTensorArray &t) {
             self.emplace_back();
1902
             auto &lod_tensor_array = BOOST_GET(LoDTensorArray, self.back());
1903 1904 1905 1906 1907 1908 1909 1910 1911
             for (size_t i = 0; i < t.size(); ++i) {
               lod_tensor_array[i].ShareDataWith(t[i]);
               lod_tensor_array[i].set_lod(t[i].lod());
             }
           },
           py::arg("var"));

  py::class_<FetchUnmergedList>(m, "FetchUnmergedList", R"DOC(
        FetchUnmergedList is 2-D array of FetchType(boost::variant(LoDTensor, LoDTensorArray)).
Z
Zhen Wang 已提交
1912 1913
        )DOC")
      .def("_move_to_list",
1914
           [](FetchUnmergedList &self) -> py::list {
Z
Zhen Wang 已提交
1915 1916 1917 1918
             py::list res(self.size());
             for (size_t i = 0; i < self.size(); ++i) {
               py::list tmp(self[i].size());
               for (size_t j = 0; j < self[i].size(); ++j) {
1919
                 if (data_is_lod_tensor(self[i][j])) {
1920
                   auto &var = BOOST_GET(LoDTensor, self[i][j]);
1921 1922
                   tmp[j] = py::cast(std::move(var));
                 } else {
1923
                   auto &var = BOOST_GET(LoDTensorArray, self[i][j]);
1924 1925 1926 1927 1928 1929
                   py::list tmp_array(var.size());
                   for (size_t k = 0; k < var.size(); ++k) {
                     tmp_array[k] = std::move(var[k]);
                   }
                   tmp[j] = std::move(tmp_array);
                 }
Z
Zhen Wang 已提交
1930 1931 1932 1933 1934 1935 1936 1937 1938
               }
               res[i] = std::move(tmp);
               self[i].clear();
             }
             self.clear();
             return res;
           },
           py::return_value_policy::take_ownership);

Y
Yu Yang 已提交
1939
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
1940
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
1941
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
1942

P
peizhilin 已提交
1943
#ifndef _WIN32
D
dangqingqing 已提交
1944 1945 1946
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
1947
#endif
P
peizhilin 已提交
1948
#endif
Y
Yu Yang 已提交
1949

1950 1951 1952 1953 1954 1955
  py::enum_<platform::TracerOption>(m, "TracerOption", py::arithmetic())
      .value("kDefault", platform::TracerOption::kDefault)
      .value("kOpDetail", platform::TracerOption::kOpDetail)
      .value("kAllOpDetail", platform::TracerOption::kAllOpDetail)
      .export_values();

1956 1957 1958 1959
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
1960
      .value("kAll", platform::ProfilerState::kAll)
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

1972
  m.def("set_tracer_option", platform::SetTracerOption);
1973 1974
  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
1975
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
1976
  m.def("reset_profiler", platform::ResetProfiler);
1977
  m.def("get_pass", [](const std::string &pass_type) {
W
WangZhen 已提交
1978 1979 1980
    auto pass = framework::ir::PassRegistry::Instance().Get(pass_type);
    return std::shared_ptr<framework::ir::Pass>(std::move(pass));
  });
Y
Yu Yang 已提交
1981

1982 1983
  m.def("size_of_dtype", framework::SizeOfType);

1984 1985 1986
  using VarQuantScale =
      std::unordered_map<std::string, std::pair<bool, LoDTensor>>;

1987 1988
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
W
WangZhen 已提交
1989
      .def("has", &ir::Pass::Has)
1990 1991 1992
      .def("set_not_owned",
           [](ir::Pass &self, const std::string &attr_name, ProgramDesc &attr) {
             self.SetNotOwned<ProgramDesc>(attr_name, &attr);
W
WangZhen 已提交
1993
           })
1994
      .def(
1995
          "set",
1996 1997 1998
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
1999 2000
      .def("set", [](ir::Pass &self, const std::string &name,
                     bool val) { self.Set<bool>(name, new bool(val)); })
2001 2002
      .def("set", [](ir::Pass &self, const std::string &name,
                     int val) { self.Set<const int>(name, new int(val)); })
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<std::string> set) {
             self.Set(name, new std::unordered_set<std::string>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name,
              std::unordered_set<int> set) {
             self.Set(name, new std::unordered_set<int>(set));
           })
      .def("set",
           [](ir::Pass &self, const std::string &name, VarQuantScale scales) {
             self.Set(name, new VarQuantScale(scales));
           })
F
flame 已提交
2017 2018
      .def("type", &ir::Pass::Type)
      .def("apply", [](ir::Pass &self, std::shared_ptr<ir::Graph> graph) {
2019
        self.Apply(graph.get());
F
flame 已提交
2020
      });
2021

X
fix  
Xin Pan 已提交
2022 2023
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
2038
  // -- python binds for parallel executor.
X
Xin Pan 已提交
2039

Y
yuyang18 已提交
2040
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
2041 2042 2043 2044
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

2045 2046 2047
    Returns:
        ExecutionStrategy: An ExecutionStrategy object.

C
chengduo 已提交
2048 2049 2050
    Examples:
        .. code-block:: python

2051 2052 2053 2054 2055 2056 2057 2058 2059
          import paddle
          import paddle.static as static
          import paddle.nn.functional as F

          paddle.enable_static()

          x = static.data(name='x', shape=[None, 13], dtype='float32')
          y = static.data(name='y', shape=[None, 1], dtype='float32')
          y_predict = static.nn.fc(input=x, size=1, act=None)
2060

2061 2062
          cost = F.square_error_cost(input=y_predict, label=y)
          avg_loss = paddle.mean(cost)
2063

2064
          sgd_optimizer = paddle.optimizer.SGD(learning_rate=0.001)
2065 2066
          sgd_optimizer.minimize(avg_loss)

2067
          exec_strategy = static.ExecutionStrategy()
C
chengduo 已提交
2068 2069
          exec_strategy.num_threads = 4

2070 2071 2072
          train_exe = static.ParallelExecutor(use_cuda=False,
                                              loss_name=avg_loss.name,
                                              exec_strategy=exec_strategy)
C
chengduo 已提交
2073 2074
        )DOC");

Y
yuyang18 已提交
2075
  exec_strategy.def(py::init())
Y
yuyang18 已提交
2076 2077 2078 2079 2080
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
2081
          },
2082 2083
          R"DOC(
            The type is INT, num_threads represents the size of thread pool that
C
chengduo 已提交
2084 2085 2086 2087 2088 2089 2090
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
            `multiprocessing.cpu_count()`. Default 0.

            Examples:
                .. code-block:: python

                    import paddle
                    import paddle.static as static

                    paddle.enable_static()

                    exec_strategy = static.ExecutionStrategy()
                    exec_strategy.num_threads = 4
            )DOC")
Y
yuyang18 已提交
2104
      .def_property(
2105 2106 2107 2108
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
2109 2110 2111 2112
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
2113 2114 2115 2116 2117
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
2118 2119 2120
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
2121 2122
                Note that this option is invalid now, and it will be removed in
                next version. Default False.)DOC")
Y
yuyang18 已提交
2123 2124 2125 2126 2127 2128 2129
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
2130 2131 2132 2133
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
2134
                because the temp variable's shape maybe the same between two iterations.
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
                Default 100.

                .. note::
                    1. If you fetch data when calling the 'run', the ParallelExecutor 
                    will clean up the temp variables at the end of the current iteration. 
                    2. In some NLP model, it may cause the GPU memory is insufficient, 
                    in this case, you should reduce `num_iteration_per_drop_scope`.

                Examples:
                    .. code-block:: python
C
chengduo 已提交
2145

2146 2147 2148 2149 2150 2151 2152
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_drop_scope = 10
2153
              )DOC")
Q
Qiao Longfei 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162
      .def_property(
          "num_iteration_per_run",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_run_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_run) {
            self.num_iteration_per_run_ = num_iteration_per_run;
          },
          R"DOC(This config that how many iteration the executor will run when
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
                user call exe.run() in python。Default: 1.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        exec_strategy = static.ExecutionStrategy()
                        exec_strategy.num_iteration_per_run = 10
Q
Qiao Longfei 已提交
2175
              )DOC")
2176 2177 2178 2179 2180 2181 2182 2183
      .def_property(
          "use_thread_barrier",
          [](const ExecutionStrategy &self) { return self.thread_barrier_; },
          [](ExecutionStrategy &self, bool use_thread_barrier) {
            self.thread_barrier_ = use_thread_barrier;
          },
          R"DOC(This config that the this is distributed training with parameter server
              )DOC")
2184 2185 2186 2187 2188
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
2189

Y
yuyang18 已提交
2190
  exec_strategy.def_property(
Y
yuyang18 已提交
2191 2192 2193 2194 2195 2196 2197
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
2198 2199
      });

C
chengduo 已提交
2200 2201 2202 2203
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

2204 2205 2206
    Returns:
        BuildStrategy: An BuildStrategy object.

C
chengduo 已提交
2207 2208 2209
    Examples:
        .. code-block:: python

2210
            import os
2211 2212 2213 2214
            import paddle
            import paddle.static as static

            paddle.enable_static()
2215

2216 2217
            os.environ['CPU_NUM'] = str(2)
            places = static.cpu_places()
2218

2219 2220 2221 2222
            data = static.data(name="x", shape=[None, 1], dtype="float32")
            hidden = static.nn.fc(input=data, size=10)
            loss = paddle.mean(hidden)
            paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
2223

2224
            build_strategy = static.BuildStrategy()
2225 2226
            build_strategy.enable_inplace = True
            build_strategy.memory_optimize = True
2227 2228
            build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
            program = static.CompiledProgram(static.default_main_program())
2229
            program = program.with_data_parallel(loss_name=loss.name,
2230 2231
                                                  build_strategy=build_strategy,
                                                  places=places)
C
chengduo 已提交
2232
)DOC");
Y
yuyang18 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
2249 2250 2251 2252
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2253
            self.reduce_ = strategy;
C
chengduo 已提交
2254
          },
2255
          R"DOC((fluid.BuildStrategy.ReduceStrategy, optional): there are two reduce
C
chengduo 已提交
2256 2257
                strategies in ParallelExecutor, AllReduce and Reduce. If you want
                that all the parameters' optimization are done on all devices independently,
2258
                you should choose AllReduce; otherwise, if you choose Reduce, all the parameters'
C
chengduo 已提交
2259 2260
                optimization will be evenly distributed to different devices, and then
                broadcast the optimized parameter to other devices.
2261
                Default is 'AllReduce'.
F
flame 已提交
2262 2263 2264 2265

                Examples:
                    .. code-block:: python

2266 2267 2268 2269 2270 2271 2272
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.reduce_strategy = static.BuildStrategy.ReduceStrategy.Reduce
F
flame 已提交
2273
                  )DOC")
Y
yuyang18 已提交
2274 2275 2276 2277 2278
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
2279 2280 2281 2282
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2283
            self.gradient_scale_ = strategy;
C
chengduo 已提交
2284
          },
2285
          R"DOC((paddle.static.BuildStrategy.GradientScaleStrategy, optional): there are three
2286
                ways of defining :math:`loss@grad` in ParallelExecutor, that is, CoeffNumDevice,
C
chengduo 已提交
2287 2288
                One and Customized. By default, ParallelExecutor sets the :math:`loss@grad`
                according to the number of devices. If you want to customize :math:`loss@grad`,
2289
                you can choose Customized. Default is 'CoeffNumDevice'.
F
flame 已提交
2290 2291 2292 2293

                Examples:
                    .. code-block:: python

C
chengduo 已提交
2294 2295
                        import numpy
                        import os
2296 2297 2298 2299
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2300 2301

                        use_cuda = True
2302 2303
                        place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
                        exe = static.Executor(place)
C
chengduo 已提交
2304 2305

                        # NOTE: If you use CPU to run the program, you need
2306
                        # to specify the CPU_NUM, otherwise, paddle will use
C
chengduo 已提交
2307 2308 2309 2310 2311 2312
                        # all the number of the logic core as the CPU_NUM,
                        # in that case, the batch size of the input should be
                        # greater than CPU_NUM, if not, the process will be
                        # failed by an exception.
                        if not use_cuda:
                            os.environ['CPU_NUM'] = str(2)
2313
                            places = static.cpu_places()
C
chengduo 已提交
2314
                        else:
2315
                            places = static.cuda_places()
C
chengduo 已提交
2316

2317 2318 2319 2320
                        data = static.data(name='X', shape=[None, 1], dtype='float32')
                        hidden = static.nn.fc(input=data, size=10)
                        loss = paddle.mean(hidden)
                        paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
C
chengduo 已提交
2321

2322
                        exe.run(static.default_startup_program())
C
chengduo 已提交
2323

2324
                        build_strategy = static.BuildStrategy()
C
chengduo 已提交
2325
                        build_strategy.gradient_scale_strategy = \
2326 2327 2328
                                  static.BuildStrategy.GradientScaleStrategy.Customized
                        compiled_prog = static.CompiledProgram(
                                  static.default_main_program()).with_data_parallel(
C
chengduo 已提交
2329
                                          loss_name=loss.name, build_strategy=build_strategy,
2330
                                          places=places)
C
chengduo 已提交
2331 2332 2333 2334 2335 2336

                        dev_count =  len(places)
                        x = numpy.random.random(size=(10, 1)).astype('float32')
                        loss_grad = numpy.ones((dev_count)).astype("float32") * 0.01
                        loss_grad_name = loss.name+"@GRAD"
                        loss_data = exe.run(compiled_prog,
2337 2338
                                              feed={"X": x, loss_grad_name : loss_grad},
                                              fetch_list=[loss.name, loss_grad_name])
F
flame 已提交
2339
                   )DOC")
Y
yuyang18 已提交
2340 2341 2342 2343
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
2344 2345 2346 2347
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Y
yuyang18 已提交
2348
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
2349
          },
2350
          R"DOC((str, optional): debug_graphviz_path indicates the path that
F
flame 已提交
2351
                writing the SSA Graph to file in the form of graphviz.
2352
                It is useful for debugging. Default is empty string, that is, ""
F
flame 已提交
2353 2354 2355 2356

                Examples:
                    .. code-block:: python

2357 2358 2359 2360
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()
C
chengduo 已提交
2361

2362 2363
                        build_strategy = static.BuildStrategy()
                        build_strategy.debug_graphviz_path = "./graph"
F
flame 已提交
2364
                    )DOC")
S
sneaxiy 已提交
2365 2366 2367 2368 2369 2370
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
2371 2372 2373 2374
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2375 2376
            self.enable_sequential_execution_ = b;
          },
2377 2378
          R"DOC((bool, optional): If set True, the execution order of ops would
                be the same as what is in the program. Default is False.
F
flame 已提交
2379 2380 2381 2382

                Examples:
                    .. code-block:: python

2383 2384 2385 2386 2387 2388
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2389 2390
                        build_strategy.enable_sequential_execution = True
          )DOC")
S
sneaxiy 已提交
2391 2392 2393 2394 2395 2396
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
2397 2398 2399 2400
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
S
sneaxiy 已提交
2401 2402
            self.remove_unnecessary_lock_ = b;
          },
2403 2404
          R"DOC((bool, optional): If set True, some locks in GPU ops would be
                released and ParallelExecutor would run faster. Default is True.
F
flame 已提交
2405 2406 2407 2408

                Examples:
                    .. code-block:: python

2409 2410 2411 2412 2413 2414
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2415 2416
                        build_strategy.remove_unnecessary_lock = True
          )DOC")
2417 2418 2419 2420
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
2421
#ifdef WIN32
2422
            PADDLE_THROW(platform::errors::Unavailable(
2423
                "Distribution mode is not supported on Windows platform."));
2424
#endif
2425 2426
            self.num_trainers_ = num_trainers;
          })
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
2439 2440 2441 2442 2443 2444
      .def_property(
          "nccl_comm_num",
          [](const BuildStrategy &self) { return self.nccl_comm_num_; },
          [](BuildStrategy &self, int nccl_comm_num) {
            self.nccl_comm_num_ = nccl_comm_num;
          })
2445
      .def_property("use_hierarchical_allreduce",
2446 2447 2448 2449 2450 2451
                    [](const BuildStrategy &self) {
                      return self.use_hierarchical_allreduce_;
                    },
                    [](BuildStrategy &self, bool use) {
                      self.use_hierarchical_allreduce_ = use;
                    })
2452
      .def_property("hierarchical_allreduce_inter_nranks",
2453 2454 2455 2456 2457 2458 2459
                    [](const BuildStrategy &self) {
                      return self.hierarchical_allreduce_inter_nranks_;
                    },
                    [](BuildStrategy &self, int nranks) {
                      self.hierarchical_allreduce_inter_nranks_ = nranks;
                    })

C
chengduo 已提交
2460 2461 2462 2463 2464 2465
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
2466 2467 2468 2469
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
C
chengduo 已提交
2470 2471
            self.fuse_elewise_add_act_ops_ = b;
          },
2472
          R"DOC((bool, optional): fuse_elewise_add_act_ops indicate whether
F
flame 已提交
2473
                to fuse elementwise_add_op and activation_op,
2474
                it may make the execution faster. Default is False.
F
flame 已提交
2475 2476 2477 2478

                Examples:
                    .. code-block:: python

2479 2480 2481 2482 2483 2484
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2485 2486
                        build_strategy.fuse_elewise_add_act_ops = True
                     )DOC")
Z
Zhen Wang 已提交
2487 2488 2489 2490
      .def_property(
          "fuse_bn_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_act_ops_; },
          [](BuildStrategy &self, bool b) {
2491
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
Z
Zhen Wang 已提交
2492
                              platform::errors::PreconditionNotMet(
2493 2494
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Z
Zhen Wang 已提交
2495 2496 2497 2498 2499 2500 2501 2502 2503
            self.fuse_bn_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_act_ops indicate whether
                to fuse batch_norm and activation_op,
                it may make the execution faster. Default is False.

                Examples:
                    .. code-block:: python

2504 2505 2506 2507 2508 2509
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
Z
Zhen Wang 已提交
2510 2511
                        build_strategy.fuse_bn_act_ops = True
                     )DOC")
Z
Zhang Ting 已提交
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
      .def_property(
          "fuse_bn_add_act_ops",
          [](const BuildStrategy &self) { return self.fuse_bn_add_act_ops_; },
          [](BuildStrategy &self, bool b) {
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
            self.fuse_bn_add_act_ops_ = b;
          },
          R"DOC((bool, optional): fuse_bn_add_act_ops indicate whether
                to fuse batch_norm, elementwise_add and activation_op,
                it may make the execution faster. Default is True

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.fuse_bn_add_act_ops = True
                     )DOC")
2537 2538 2539 2540
      .def_property(
          "enable_auto_fusion",
          [](const BuildStrategy &self) { return self.enable_auto_fusion_; },
          [](BuildStrategy &self, bool b) {
2541
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
2542
                              platform::errors::PreconditionNotMet(
2543 2544
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
            self.enable_auto_fusion_ = b;
          },
          R"DOC((bool, optional): Whether to enable fusing subgraph to a
                fusion_group. Now we only support fusing subgraph that composed
                of elementwise-like operators, such as elementwise_add/mul
                without broadcast and activations.

                Examples:
                    .. code-block:: python

2555 2556 2557 2558 2559 2560
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
2561 2562
                        build_strategy.enable_auto_fusion = True
                    )DOC")
2563 2564 2565 2566 2567 2568
      .def_property(
          "fuse_relu_depthwise_conv",
          [](const BuildStrategy &self) {
            return self.fuse_relu_depthwise_conv_;
          },
          [](BuildStrategy &self, bool b) {
2569 2570 2571 2572
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
2573 2574
            self.fuse_relu_depthwise_conv_ = b;
          },
2575
          R"DOC((bool, optional): fuse_relu_depthwise_conv indicate whether
F
flame 已提交
2576 2577 2578
                to fuse relu and depthwise_conv2d,
                it will save GPU memory and may make the execution faster.
                This options is only available in GPU devices.
2579
                Default is False.
F
flame 已提交
2580 2581 2582 2583

                Examples:
                    .. code-block:: python

2584 2585 2586 2587 2588 2589
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2590 2591
                        build_strategy.fuse_relu_depthwise_conv = True
          )DOC")
C
chengduo 已提交
2592 2593 2594 2595 2596 2597
      .def_property("fuse_broadcast_ops",
                    [](const BuildStrategy &self) {
                      return self.fuse_broadcast_ops_ == true ||
                             self.fuse_broadcast_ops_ == boost::none;
                    },
                    [](BuildStrategy &self, bool b) {
2598 2599 2600 2601
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2602 2603
                      self.fuse_broadcast_ops_ = b;
                    },
2604
                    R"DOC((bool, optional): fuse_broadcast_op indicates whether
2605 2606 2607 2608
                      to fuse the broadcast ops. Note that, in Reduce mode,
                      fusing broadcast ops may make the program faster. Because
                      fusing broadcast OP equals delaying the execution of all
                      broadcast Ops, in this case, all nccl streams are used only
2609 2610 2611 2612 2613
                      for NCCLReduce operations for a period of time. Default False.

                      Examples:
                          .. code-block:: python

2614 2615 2616 2617 2618 2619
                              import paddle
                              import paddle.static as static

                              paddle.enable_static()

                              build_strategy = static.BuildStrategy()
2620 2621
                              build_strategy.fuse_broadcast_ops = True
                    )DOC")
C
chengduo 已提交
2622 2623
      .def_property("fuse_all_optimizer_ops",
                    [](const BuildStrategy &self) {
C
chengduo 已提交
2624 2625
                      return self.fuse_all_optimizer_ops_ == true ||
                             self.fuse_all_optimizer_ops_ == boost::none;
C
chengduo 已提交
2626 2627
                    },
                    [](BuildStrategy &self, bool b) {
2628 2629 2630 2631
                      PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                                        platform::errors::PreconditionNotMet(
                                            "BuildStrategy has been finlaized, "
                                            "cannot be configured again."));
C
chengduo 已提交
2632 2633
                      self.fuse_all_optimizer_ops_ = b;
                    })
Q
qingqing01 已提交
2634 2635 2636 2637
      .def_property(
          "sync_batch_norm",
          [](const BuildStrategy &self) { return self.sync_batch_norm_; },
          [](BuildStrategy &self, bool b) {
2638 2639 2640 2641
            PADDLE_ENFORCE_NE(self.IsFinalized(), true,
                              platform::errors::PreconditionNotMet(
                                  "BuildStrategy has been finlaized, cannot be "
                                  "configured again."));
Q
qingqing01 已提交
2642 2643
            self.sync_batch_norm_ = b;
          },
2644
          R"DOC((bool, optional): sync_batch_norm indicates whether to use
Q
qingqing01 已提交
2645 2646 2647
                synchronous batch normalization which synchronizes the mean
                and variance through multi-devices in training phase.
                Current implementation doesn't support FP16 training and CPU.
2648 2649
                And only synchronous on one machine, not all machines. 
                Default is False.
F
flame 已提交
2650 2651 2652 2653

                Examples:
                    .. code-block:: python

2654 2655 2656 2657 2658 2659
                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
F
flame 已提交
2660 2661
                        build_strategy.sync_batch_norm = True
                )DOC")
D
dzhwinter 已提交
2662 2663
      .def_property(
          "memory_optimize",
2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
          [](const BuildStrategy &self) -> py::object {
            if (self.memory_optimize_) {
              return py::cast(self.memory_optimize_.get());
            } else {
              return py::cast(nullptr);
            }
          },
          [](BuildStrategy &self, const py::handle &value) {
            auto *py_obj = value.ptr();
            if (py_obj == nullptr || py_obj == Py_None) {
              self.memory_optimize_ = boost::none;
            } else if (PyBool_Check(py_obj)) {
              self.memory_optimize_ = (py_obj == Py_True);
            } else {
2678 2679 2680
              PADDLE_THROW(platform::errors::InvalidArgument(
                  "BuildStrategy.memory_optimize must be set to None, False or "
                  "True"));
2681 2682
            }
          },
2683
          R"DOC((bool, optional): memory opitimize aims to save total memory
2684
                consumption, set to True to enable it.
2685

2686 2687 2688
                Default None. None means framework would choose to use or not use 
                this strategy automatically. Currently, None means that it is 
                enabled when GC is disabled, and disabled when GC is enabled. 
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
                True means enabling and False means disabling. Default is None.

                Examples:
                    .. code-block:: python

                        import paddle
                        import paddle.static as static

                        paddle.enable_static()

                        build_strategy = static.BuildStrategy()
                        build_strategy.memory_optimize = True
                
                )DOC")
2703 2704 2705
      .def_property(
          "is_distribution",
          [](const BuildStrategy &self) { return self.is_distribution_; },
2706 2707 2708
          [](BuildStrategy &self, bool b) {
#ifdef WIN32
            if (b) {
2709
              PADDLE_THROW(platform::errors::Unavailable(
2710
                  "Distribution mode is not supported on Windows platform."));
2711 2712 2713 2714 2715
            }
#else
            self.is_distribution_ = b;
#endif
          })
Q
can run  
Qiao Longfei 已提交
2716 2717 2718
      .def_property("async_mode",
                    [](const BuildStrategy &self) { return self.async_mode_; },
                    [](BuildStrategy &self, bool b) { self.async_mode_ = b; })
D
dzhwinter 已提交
2719
      .def_property(
D
dzhwinter 已提交
2720 2721 2722
          "enable_inplace",
          [](const BuildStrategy &self) { return self.enable_inplace_; },
          [](BuildStrategy &self, bool b) { self.enable_inplace_ = b; })
2723 2724 2725 2726
      .def_property(
          "enable_addto",
          [](const BuildStrategy &self) { return self.enable_addto_; },
          [](BuildStrategy &self, bool b) { self.enable_addto_ = b; })
C
chengduo 已提交
2727 2728
      .def_property(
          "fuse_all_reduce_ops",
C
chengduo 已提交
2729 2730 2731 2732
          [](const BuildStrategy &self) {
            return self.fuse_all_reduce_ops_ == true ||
                   self.fuse_all_reduce_ops_ == boost::none;
          },
C
chengduo 已提交
2733
          [](BuildStrategy &self, bool b) { self.fuse_all_reduce_ops_ = b; })
2734 2735 2736 2737 2738 2739 2740
      .def_property("enable_backward_optimizer_op_deps",
                    [](const BuildStrategy &self) {
                      return self.enable_backward_optimizer_op_deps_;
                    },
                    [](BuildStrategy &self, bool b) {
                      self.enable_backward_optimizer_op_deps_ = b;
                    })
2741 2742 2743 2744
      .def_property(
          "cache_runtime_context",
          [](const BuildStrategy &self) { return self.cache_runtime_context_; },
          [](BuildStrategy &self, bool b) { self.cache_runtime_context_ = b; })
2745 2746 2747 2748 2749 2750 2751 2752 2753
      .def_property(
          "mkldnn_enabled_op_types",
          [](const BuildStrategy &self) {
            return self.mkldnn_enabled_op_types_;
          },
          [](BuildStrategy &self,
             const std::unordered_set<std::string> &mkldnn_enabled_op_types) {
            self.mkldnn_enabled_op_types_ = mkldnn_enabled_op_types;
          })
2754
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
2755
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
2756 2757 2758 2759 2760
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
2761 2762

  pe.def(py::init<const std::vector<platform::Place> &,
Y
Yan Xu 已提交
2763
                  const std::vector<std::string> &, const std::string &,
X
Xin Pan 已提交
2764
                  Scope *, std::vector<Scope *> &, const ExecutionStrategy &,
X
Xin Pan 已提交
2765
                  const BuildStrategy &, ir::Graph *>())
Y
Yu Yang 已提交
2766 2767 2768 2769
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
2770 2771 2772 2773 2774
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
2775 2776 2777
      .def("drop_local_exe_scopes", &ParallelExecutor::DropLocalExeScopes)
      .def("_need_create_local_exe_scopes",
           &ParallelExecutor::NeedCreateLocalExeScope)
Y
Yu Yang 已提交
2778 2779 2780 2781
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
2782 2783
      .def("run",
           [](ParallelExecutor &self,
Z
Zhen Wang 已提交
2784 2785 2786 2787 2788 2789 2790 2791
              const std::vector<std::string> &fetch_tensors,
              bool return_merged) -> py::object {
             paddle::framework::FetchResultType ret;
             {
               pybind11::gil_scoped_release release;
               ret = self.Run(fetch_tensors, return_merged);
             }
             if (return_merged) {
2792
               return py::cast(
2793
                   std::move(BOOST_GET(paddle::framework::FetchList, ret)));
Z
Zhen Wang 已提交
2794 2795
             } else {
               return py::cast(std::move(
2796
                   BOOST_GET(paddle::framework::FetchUnmergedList, ret)));
Z
Zhen Wang 已提交
2797
             }
2798 2799
           })
      .def("device_count", &ParallelExecutor::DeviceCount);
Y
Yu Yang 已提交
2800

D
dongdaxiang 已提交
2801
  BindFleetWrapper(&m);
T
Thunderbrook 已提交
2802

T
Thunderbrook 已提交
2803 2804
#ifdef PADDLE_WITH_PSLIB
  BindHeterWrapper(&m);
T
Thunderbrook 已提交
2805 2806 2807
#endif
#if (defined PADDLE_WITH_NCCL) && (defined PADDLE_WITH_PSLIB)
  BindPSGPUWrapper(&m);
T
Thunderbrook 已提交
2808
#endif
2809
  BindGlooWrapper(&m);
H
hutuxian 已提交
2810
  BindBoxHelper(&m);
H
hutuxian 已提交
2811 2812 2813
#ifdef PADDLE_WITH_BOX_PS
  BindBoxWrapper(&m);
#endif
2814
#ifdef PADDLE_WITH_NCCL
D
dongdaxiang 已提交
2815
  BindNCCLWrapper(&m);
2816 2817 2818
#endif
#ifdef PADDLE_WITH_GLOO
  BindGlooContext(&m);
W
wopeizl 已提交
2819
#endif
F
flame 已提交
2820 2821
  BindGraph(&m);
  BindNode(&m);
F
flame 已提交
2822
  BindInferenceApi(&m);
2823
  BindCompatible(&m);
2824
  BindDataset(&m);
Y
yaoxuefeng 已提交
2825
  BindGenerator(&m);
Y
Yanghello 已提交
2826 2827 2828
#ifdef PADDLE_WITH_CRYPTO
  BindCrypto(&m);
#endif
T
tangwei12 已提交
2829

2830
#ifdef PADDLE_WITH_DISTRIBUTE
T
tangwei12 已提交
2831 2832
  BindDistFleetWrapper(&m);
  BindPSHost(&m);
2833
  BindCommunicatorContext(&m);
T
tangwei12 已提交
2834 2835
  BindDistCommunicator(&m);
  BindHeterClient(&m);
2836
#endif
L
Luo Tao 已提交
2837
}
2838
}  // namespace pybind
2839
}  // namespace paddle