test_TrainingAlgorithm.cpp 13.8 KB
Newer Older
H
hedaoyuan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/**
 * test_TrainingAlgorithm.cpp
 *
 * Author: hedaoyuan (hedaoyuan@baidu.com)
 * Created on: 2016-06-29
 *
 * Copyright (c) Baidu.com, Inc. All Rights Reserved
 */

#include <gtest/gtest.h>
#include "paddle/utils/Util.h"
#include "paddle/math/TrainingAlgorithmOp.h"
#include "OriginalOptimizerApi.h"
H
hedaoyuan 已提交
14
#include "TensorCheck.h"
H
hedaoyuan 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374

using namespace paddle;  // NOLINT

#ifndef PADDLE_TYPE_DOUBLE
P_DEFINE_double(max_diff, 1e-5, "max diff allowed");
#else
P_DEFINE_double(max_diff, 1e-13, "max diff allowed");
#endif

class SetMaxDiff {
public:
  explicit SetMaxDiff(double max_diff) {
    max_diff_ = FLAGS_max_diff;
    FLAGS_max_diff = max_diff;
  }
  ~SetMaxDiff() {
    FLAGS_max_diff = max_diff_;
  }
private:
  double max_diff_;
};

#define COPY_VECTOR_TO_CPU(cpuVec, vector)  \
  do {\
    if (vector->useGpu()) {\
      cpuVec = Vector::create(vector->getSize(), false);\
      cpuVec->copyFrom(*vector);\
    } else {\
      cpuVec = vector;\
    }\
  } while (0)

int VectorCheckErr(const VectorPtr& vector1, const VectorPtr& vector2) {
  VectorPtr tmp1;
  VectorPtr tmp2;
  COPY_VECTOR_TO_CPU(tmp1, vector1);
  COPY_VECTOR_TO_CPU(tmp2, vector2);
  return VectorCheckErr(*tmp1, *tmp2);
}

typedef std::function<void(size_t size, bool useGpu)> testMatrixFunc;

void testCase(testMatrixFunc matrixFunc) {
  for (auto useGpu : {false, true}) {
    for (auto size : {1, 32, 64, 128, 512, 1024, 4096, 32768, 65536, 131072,
                       262144, 524288, 1048576, 2097152}) {
      LOG(INFO) << " size=" << size << " useGpu=" << useGpu;
      matrixFunc(size, useGpu);
    }
  }
}

#define INIT_VECTOR(vec1, vec2, type, size, useGpu) \
    vec1[type] = Vector::create(size, useGpu);      \
    vec2[type] = Vector::create(size, useGpu);      \
    vec1[type]->rand();                             \
    vec2[type]->copyFrom(*vec1[type]);

void testAdagrad(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdagradParameterOptimizer(bufs1,
    epsilon, learningRate, momentum, decayRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& accum_buffer = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(adagradApply(value, grad, mom, accum_buffer, accum, lr,
    epsilon, learningRate, momentum, decayRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, Adagrad) {
  testCase(testAdagrad);
}

void testAdaDelta(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdaDeltaParameterOptimizer(bufs1,
    rou, epsilon, learningRate, momentum, decayRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& accum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& accum_update = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(adadeltaApply(value, grad, mom, accum, accum_update,
    lr, rou, epsilon, learningRate, momentum, decayRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, AdaDelta) {
  testCase(testAdaDelta);
}

template<bool isFirstTime>
void testRMSProp(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM1, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  /* make sure 'g - f.square()' greater than 0 */
  bufs1[PARAMETER_GRADIENT_SQURESUM]->add(1.0);
  bufs2[PARAMETER_GRADIENT_SQURESUM]->copyFrom(
    *bufs1[PARAMETER_GRADIENT_SQURESUM]);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real accumulatedRou = rou;

  EXPRESSION_PERFORMANCE(RMSPropParameterOptimizer(bufs1,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& sum1 = *bufs2[PARAMETER_GRADIENT_SQURESUM1];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(rmspropApply(value, grad, mom, sum, sum1, lr,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM1],
                  bufs2[PARAMETER_GRADIENT_SQURESUM1]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, RMSProp) {
  testCase(testRMSProp<true>);
  testCase(testRMSProp<false>);
}

template<bool isFirstTime>
void testDecayedAdagrad(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT_SQURESUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_LEARNING_RATE, size, useGpu);

  real rou = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real momentum = (real)rand() / (real)RAND_MAX;  // NOLINT
  real decayRate = (real)rand() / (real)RAND_MAX;  // NOLINT
  real accumulatedRou = rou;

  if (isFirstTime) {
    bufs1[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
    bufs2[PARAMETER_GRADIENT_SQURESUM]->zeroMem();
  }

  EXPRESSION_PERFORMANCE(DecayedAdagradParameterOptimizer(bufs1,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& sum = *bufs2[PARAMETER_GRADIENT_SQURESUM];
  BaseMatrix& lr = *bufs2[PARAMETER_LEARNING_RATE];

  EXPRESSION_PERFORMANCE(decayedAdagradApply(value, grad, mom, sum, lr,
    accumulatedRou, rou, epsilon, learningRate, momentum, decayRate,
    isFirstTime));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_GRADIENT_SQURESUM],
                  bufs2[PARAMETER_GRADIENT_SQURESUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_LEARNING_RATE],
                  bufs2[PARAMETER_LEARNING_RATE]);
}

TEST(Training, DecayedAdagrad) {
  testCase(testDecayedAdagrad<false>);
  testCase(testDecayedAdagrad<true>);
}

void testAdam(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_SECOND_MOMENTUM, size, useGpu);

  real beta1 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta1_power = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2_power = (real)rand() / (real)RAND_MAX;  // NOLINT
  real epsilon = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(AdamParameterOptimizer(bufs1,
    beta1, beta2, beta1_power, beta2_power, epsilon, learningRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& v = *bufs2[PARAMETER_SECOND_MOMENTUM];

  EXPRESSION_PERFORMANCE(adamApply(value, grad, mom, v,
    beta1, beta2, beta1_power, beta2_power, epsilon, learningRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_SECOND_MOMENTUM],
                  bufs2[PARAMETER_SECOND_MOMENTUM]);
}

TEST(Training, Adam) {
  testCase(testAdam);
}

void testAdamax(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_WEIGHTED_INFINITY_NORM, size, useGpu);

  real beta1 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta2 = (real)rand() / (real)RAND_MAX;  // NOLINT
  real alpha = (real)rand() / (real)RAND_MAX;  // NOLINT
  int64_t step = 2;

  EXPRESSION_PERFORMANCE(AdamaxParameterOptimizer(bufs1,
    beta1, beta2, step, alpha));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& mom = *bufs2[PARAMETER_MOMENTUM];
  BaseMatrix& u = *bufs2[PARAMETER_WEIGHTED_INFINITY_NORM];

  EXPRESSION_PERFORMANCE(adamaxApply(value, grad, mom, u,
    beta1, beta2, step, alpha));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM], bufs2[PARAMETER_MOMENTUM]);
  CHECK_VECTORPTR(bufs1[PARAMETER_WEIGHTED_INFINITY_NORM],
                  bufs2[PARAMETER_WEIGHTED_INFINITY_NORM]);
}

TEST(Training, Adamax) {
#ifndef PADDLE_TYPE_DOUBLE
  SetMaxDiff diff(1e-4);
#endif
  testCase(testAdamax);
}

void testSparseMomentum(size_t size, bool useGpu) {
  VectorPtr bufs1[NUM_PARAMETER_TYPES];
  VectorPtr bufs2[NUM_PARAMETER_TYPES];
  INIT_VECTOR(bufs1, bufs2, PARAMETER_VALUE, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_GRADIENT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_UT, size, useGpu);
  INIT_VECTOR(bufs1, bufs2, PARAMETER_MOMENTUM_VT, size, useGpu);

  real alpha = (real)rand() / (real)RAND_MAX;  // NOLINT
  real beta = (real)rand() / (real)RAND_MAX;  // NOLINT
  real gamma = (real)rand() / (real)RAND_MAX;  // NOLINT
  real tau = (real)rand() / (real)RAND_MAX;  // NOLINT
  real learningRate = (real)rand() / (real)RAND_MAX;  // NOLINT

  EXPRESSION_PERFORMANCE(SparseMomentumParameterOptimizer(bufs1,
    alpha, beta, gamma, tau, learningRate));

  BaseMatrix& value = *bufs2[PARAMETER_VALUE];
  BaseMatrix& grad = *bufs2[PARAMETER_GRADIENT];
  BaseMatrix& momU = *bufs2[PARAMETER_MOMENTUM_UT];
  BaseMatrix& momV = *bufs2[PARAMETER_MOMENTUM_VT];

  EXPRESSION_PERFORMANCE(sparseMomentumApply(value, grad, momU, momV,
    alpha, beta, gamma, tau, learningRate));

  CHECK_VECTORPTR(bufs1[PARAMETER_VALUE], bufs2[PARAMETER_VALUE]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_UT],
                  bufs2[PARAMETER_MOMENTUM_UT]);
  CHECK_VECTORPTR(bufs1[PARAMETER_MOMENTUM_VT],
                  bufs2[PARAMETER_MOMENTUM_VT]);
}

TEST(Training, SparseMomentum) {
  testCase(testSparseMomentum);
}

int main(int argc, char** argv) {
  testing::InitGoogleTest(&argc, argv);
  initMain(argc, argv);
  hl_start();
  hl_init(FLAGS_gpu_id);
  return RUN_ALL_TESTS();
}